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Abstract—Responsive applications such as augmented reality
require nearby computational offloading units with low latency.
The concept of cloudlets is one promising approach that sat-
isfies these requirements. However, due to their wireless range
restrictions cloudlets have always been faced with deployment
issues of achieving high spatial coverage. In this paper, we look
at the coverage issue from an end-user’s perspective instead of
an established provider perspective: we first argue that temporal
coverage of cloudlet accessibility is preferable to spatial coverage
for an end-user’s experience considering his daily mobility
behavior. Next, we investigate what is necessary to achieve a
high temporal coverage for an individual user and to what extent
is temporal coverage realizable with concepts like router-based
cloudlets. To show our hypothesis and understanding the tempo-
ral coverage aspect, we collected two comprehensive datasets, an
access points dataset with estimated location information and a
human mobility dataset consisting of mobility traces from 30
participants within a major city over 4 weeks. Our analysis
results show that high temporal coverage can be achieved by
a relatively small set of router-based cloudlets since students
mainly stay at two places, their homes and university, which
represent a large part of the temporal coverage. The remaining
rate at which coverage increases heavily depends on the user’s
mobility patterns. Our findings can be used to place router-based
cloudlets at the right locations and estimate the number needed
to achieve a certain temporal coverage in urban environments.

I. INTRODUCTION

Cloudlets are small-scale decentralized computation units
located in the near of mobile users to perform resource-
intensive tasks [1]. Due to the proximity, cloudlets overcome
latency and network traffic issues, which benefit immersive
applications such as augmented reality [2]. However, depend-
ing on the cloudlet deployment (e.g., hosted by an Internet
service provider, a local business or private households), per-
formances and range restrictions vary [3]. Especially, the low
spatial coverage of the used short-range wireless technologies
(e.g., WiFi) requires a dense deployment which blocks the
breakthrough of cloudlets as ubiquitous computing resources.

As an example, to achieve a nearly complete spatial cov-
erage of cloudlets in an urban area like Paris more than one
million computation units need to be deployed assuming a
circular WiFi range of 25m and a homogeneous distribution.
However, this deployment approach is far from the reality due
to the vast amount of required computation units to be installed

and operated. Moreover, pursing a high spatial coverage does
not inherently consider either popular areas with crowd of
people or rural areas with a low density of potential end-users.

This small thought experiment demonstrates one of the
practical deployment challenges of cloudlets to achieve a
nearly complete spatial coverage. Many research works al-
ready studied the spatial coverage in different fields such as
participatory sensor networks [4], mobile data offloading to
the cloud [5], or cloudlet deployments [6]. Only a few works
(e.g., [7]) rethink the deployment challenge of range-restricted
technologies from a user’s perspective to achieve a high end-
user’s satisfaction, which can be achieved by a high temporal
coverage of cloudlet services. However, these works focus on
a deployment scheme of access points (AP) for delayed mobile
data offloading and mainly rely on simulations.

In the context of cloudlet deployment, temporal coverage
is a metric about quality of service delivered by cloudlets
and crucial to achieve a high individual user satisfaction. We
believe that the concept of router-based cloudlets - upgrading
wireless home routers as cloudlet [8] - are a promising
lightweight approach to reach this temporal service coverage
for responsive mobile applications such as augmented reality
due to router’s dense distribution in urban environments.

In this paper, we study temporal coverage on the concept
of router-based cloudlets by considering real-world access
points and human mobility data. For that, we collect two
comprehensive datasets: (i) an access points dataset from
a major city systematically gathered by over 20 volunteers
through wardriving techniques [9], and (ii) a human mobility
dataset consisting of mobility traces from 30 participants
living in the same city over 4 weeks by using our tracking
application [10]. Using both datasets, we first understand daily
human mobility to answer the questions what is required to
achieve a high temporal coverage for an individual user and
to what extent is this temporal coverage realizable with router-
based cloudlets. Our analysis results show that high temporal
coverage can be achieved by a relatively small set of cloudlets
at the right locations such as home and university (respectively
work place). We also confirm that user’s mobility patterns have
a high impact on the rate at which temporal coverage increases.

In summary, the contributions of this paper are twofold:



• We collect two comprehensive datasets: (i) nearly
20,000 wireless access points data with estimated location
information within a major city; and (ii) human mobility
traces consisting of over 5 million location values from
30 participants over 4 weeks.

• To the best of our knowledge, this is the first work
that investigates and understand the temporal coverage
of router-based cloudlets from a user’s perspective using
real-world data, and shows up their vast potential for a
large-scale deployment in urban environments.

The remainder of this paper is organized as follows. First,
we give an introduction in router-based cloudlets and provide
an overview of the related work. Second, we report the con-
ducted studies and characterize the collected datasets. Third,
we present our extensive analysis results. The paper closes
with discussion and conclusion.

II. BACKGROUND AND RELATED WORK

The emergence of mobile devices such as smartphones as
daily companion and the increasing use of mobile computing
require solutions to overcome problems such as resource
scarcity, or mobility. Mobile cloud computing can address
these problems by leveraging resourceful data centers that
are distant (aka the cloud) or closely located (aka edge
servers) [11]. One approach is the concept of cloudlets which
are small-scale computation units installed in the public in-
frastructure (e.g., within coffee shops) [12]. However, since the
introduction of cloudlets in 2009 [1], this concept is faced with
coverage issues due to their inherently range restrictions [3].

In [8], the authors propose upgrading wireless home routers
as cloudlets to enable a dense offloading infrastructure, which
is maintained and operated by household owners. Various
incentives mechanisms (e.g., [13]) can further increase the
owner’s willingness to provide this functionality to others.
Equipped with a micro uninterrupted power supply [14], the
router-based cloudlet concept can also be used in emergency
situations, e.g., as communication bridge [15] in infrastructure-
less wireless networking [16], for executing remote procedure
calls in delay-tolerant networks [17], as broker for surrogate
discovery [18], or for distributed in-network processing [19].
Since we believe that router-based cloudlets are a promising
decentralized approach for a large-scale deployment, we use
this concept for our analysis.

Finding the ideal placement of cloudlets to achieve a high
temporal coverage instead of spatial coverage is extremely
challenging. In literature, the deployment of wireless APs
has been studied extensively (e.g., [7], [20]), especially in
the context of mobile data offloading [5]. For instance, the
authors of [7] investigate the wireless access point deployment
from a user’s point of view. However, this work focuses on
offloading mobile data to the cloud and relies on simulations.
The same is true for other existing works, e.g., the authors
of [6] investigate a large-scale deployment of cloudlets in
terms of achieving high spatial coverage, but do not consider
real-world conditions and the temporal aspect.

Fig. 1. Locations of wireless APs collected in the city of Darmstadt, Germany

Inspired by scientific works like [7], we investigate the de-
ployment of router-based cloudlets from a user’s perspective.
For that, we first need to understand user’s mobility [21],
and user’s daily routines [22]. Considering human mobility is
essential for building smarter systems or deploying communi-
cation technologies in a useful way since the user’s mobility
has an impact on the technology performances (e.g., [23]),
or can be used to further optimize them (e.g., [24]). For
instance, the authors of [24] propose BreadCrumbs, a system
that utilizes user’s mobility, which is highly predictable (e.g.,
examined by [25], [26]), to forecast network connectivities.
These predictive knowledge of connectivity changes can then
be used by mobile devices to schedule their network usages
more intelligently and conserve valuable resources.

Taking human mobility into account, we study and under-
stand the temporal coverage of router-based cloudlets from a
new user’s perspective for further increasing user satisfaction.
With our study, we aim to improve the placements of router-
based cloudlets and support their deployments by considering
human’s demands. In summary, to the best of our knowledge
this is the first work that investigates the temporal coverage
aspect of router-based cloudlets from an end-user’s point of
view using real-world access points and human mobility data.

III. COLLECTED DATASETS

In this section, we briefly report our conducted studies
to collect two comprehensive real-world datasets, an access
points dataset and a human mobility dataset within a German
major city, namely Darmstadt, with a population of around
150,000 inhabitants. We further clean and characterize both
datasets to serve as the basis for our experimental analysis.

A. Access Points Dataset

To get a consistent up-to-date dataset of visible real-world
access points (AP) from the city of Darmstadt (Germany),
over 20 volunteers systematically walked through the city
and collected the signals from wireless access points (aka
wardriving [9]). We estimate the actual location of an access
point by using trilateration methods on multiple data samples
for this AP [15]. To further increase the data quality, we apply
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Fig. 2. Analysis of location values collected from all 30 participants

some basic filters on the resulting data to eliminate duplicated
MAC addresses, or remove temporary mobile access points
by looking up the manufacturers from the Organizationally
Unique Identifier part of a MAC address.

The resulting dataset consists of 19,311 AP locations in
an area of approximately 63 km2 covering core districts of
the city of Darmstadt (cf. Fig. 1), i.e., an average density
of about 3 routers per 10,000 square meters (100m by 100m
area). As can be seen in Figure 1, the distribution of wire-
less access points is really dense in uptown, and sparse in
parks or industrial areas, which reflects the common router
deployment pattern in urban environments [15]. Assuming all
60,000 households1 and shops located in the mentioned area
are equipped with wireless home routers, we were able to
collect one out of three existing access points. Since the access
points are collected while walking through the city and not
inside (tower) buildings or private locations, our dataset still
reflects the same usage context as a mobile user, which makes
the dataset adequate for our analysis.

B. Human Mobility Dataset

To get a human mobility dataset, we conducted a user study
with 30 participants living in Darmstadt (Germany) over four
weeks. All participants are students of Technische Universität
Darmstadt and pursue their Master of computer science. The
average age of the participants is 25.4 years. In terms of
gender, 24 are male (80%) and 6 are female (20%). We use a
light version of our Android data collection app (cf. [10]) to
automatically track required location data in the background.

The dataset consists of over 5 million location values
(173, 109 ± 100, 369 per user) with a median accuracy of
30 meters. Figure 2a shows the average temporal coverage
of our dataset. On average, we have data accounting for
approximately 77.1% of the time since the phones have been
deployed, i.e., 18.5 ± 4.8 hours of location values per day.
Since the temporal coverage of the first two and last two days
of the user study is really sparse, we remove these days from
the following investigations. More precisely, we use data from
24 valid days out of 28 study days, which results in a daily
collection coverage of 20.1± 1.6 hours (83.8%).

1https://www.darmstadt.de/standort/statistik-und-
stadtforschung/datenreport-2016/bevoelkerung
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Fig. 3. Normalized mobility entropy of participants

IV. EXPERIMENTAL ANALYSIS

In this section, we first analyze location traces of users to
understand human mobility. Considering these new insights in
human behavior, we study and understand temporal coverage,
as well as investigate how end-users can achieve a high
temporal coverage using router-based cloudlets.

A. Understanding Human Mobility

Based on the collected location values, we first extract
significant places and place visits [27] of each individual
user using a spatiotemporal clustering algorithm proposed
by [28]. For that, we need to choose suitable distance thdist

and time thresholds thtime as clustering parameters. Thus,
we investigate how the average number of significant places
per user changes as a function of the distance and the time
thresholds. In Figure 2b, we can see that the average number
of significant place visits decreases when the time threshold
increases. The same is true for the distance threshold: if the
distance threshold increases, the average number of place visits
decreases. As suitable choices, we choose thdist = 25m
since the curves make not much of a difference when the
distance threshold further increases, and thtime = 15min,
where the curve converges to an asymptote of a fixed number
of significant place visits. Using these clustering parameters,
we extract 631 places (21.0 ± 8.2 per user) and 2,353 place
visits (78.4 ± 19.2 per user). However, most places (e.g.,
restaurant) are only visited once within the study, which make
them unsuitable for our analysis. Thus, we cluster these places
and identify four significant place categories over all users,
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Fig. 4. Temporal distribution of participant’s daily mobility patterns revealed from our collected dataset (the intensity reflects the number of participants over
the time of day, where black is a high population and white a low population)

namely home, university, other places, and no places (i.e., a
transition between two places or the user is on the way).

Figure 2c shows the cumulative distribution function of the
resulting residence times for the particular places (i.e., how
long a user stays there). We see that a student is mainly
at home (M = 860.5min, SD = 850.2min, MD = 718min),
which is obvious since students primarily sleep and learn
at home. The median residence time at the university in-
cluding canteen or library is about 1.5h (M = 128.6min,
SD = 121.5min, MD = 92min), which represents the normal
duration of a lecture or exercise group. While the median
residence time at other places (M = 181.5min, SD = 339.1min,
MD = 60min) such restaurant/bar, gym, or friend’s home is
lower than the residence time at the university, students still
stay there much longer on an average. As expected, residence
times at no places or transitions between places are very
short (M = 21.1min, SD = 25.5min, MD = 14min) since
most students live in the city where the university is also
located. Comparing to other scientific works (e.g., [22]), our
participants show similar behavior patterns.

Figure 4 shows the temporal distribution of participant’s
daily movement patterns as function of weekdays and day-
times. We can observe that students are mainly at home,
especially in the period between 6pm and 9am (evening and
night epoch) (cf.Fig. 4a). There is one exception on Friday
and Saturday evening and night, where some students go out,
and stay at other places. During the day epoch, which is
between 9am and 6pm, students also leave their homes to
go to university (cf. Fig. 4b). Note that some students stay
at university on weekends, e.g., to learn in the library. Since
most students do not have organized daily routines, the stays
at other places are not well-defined and concentrate to the day
epoch (cf. Fig. 4c). This is also true for transitions between
places, which are irregular distributed through the day and
evening period (cf. Fig. 4d).

To further quantify the mobility of participants, we apply
an information entropy metric on our mobility dataset. In
information theory, the amount of randomness in a signal
corresponds to its entropy as defined by Shannon [22]:

H(x) = −
n∑

i=1

p(i) log2 p(i) (1)

Using Equation 1, we calculate individual weekly entropies
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for users’ mobility patterns by drawing 144 samples for each
day. In our case, the maximal theoretical entropy of mobility
is about 2.32. We normalize the entropy values between 0 and
1 to make it comparable to other scientific works (cf. Fig. 3).
We see that most of our participants live entropic lives which
tend to be more variable [22]. Moreover, we do not find a
significant gender and entropy dependency in our dataset.

B. Understanding Temporal Coverage Using Router-based
Cloudlets

We define temporal coverage T i for a single user i as a
temporal union

⋃T of all time ranges covered by all mobility
traces M i, where the user has access to an upgraded router
as cloudlet. Thus, T i =

⋃T
j Tmj

, where Tmj
is the time

range covered by mobility trace mj . In general, coverage is
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Fig. 7. Temporal coverage as a function of normalized mobility entropy and n upgraded router-based cloudlets
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often defined as k-coverage, i.e., a time frame is said to be
covered if the user has access to at least k cloudlets [4]. For our
study, we assume 1-coverage (k=1), i.e., a single router-based
cloudlet covering the time is sufficient. Given this definition,
we are able to study and understand the temporal coverage of
router-based cloudlets in our real-world data set.

Figure 5 shows the cumulated temporal coverage averaged
over all users as function of accessible router-based cloudlets.
We can see that only two cloudlets located at the right
places (home and university) are sufficient to achieve a high
temporal coverage over 80% (MD = 81.9%, SD = 14.2%). Each
additional router-based cloudlet only increases the coverage
minimally. On average, we only reach 85.3% of a complete
temporal coverage after considering 25 cloudlets.

As expected from the mobility data, placing two stationary
cloudlets at the user’s home (e.g., upgrading his home router)
and at the university (e.g., upgrading his laptop computer as
router substitute) are crucial. For that, we further investigate
the temporal coverage, which can be provided by these two
cloudlets. Upgrading user’s home router provides over 80 %
temporal coverage in three out of four cases (cf. Fig. 6).
This finding is highly relevant for (service) providers, which
offer responsive applications that rely on offloading resource-
intensive tasks to nearby cloudlets. More importantly, upgrad-
ing the user’s own router is straightforward, as well as does
not require advanced privacy and authentication mechanisms.
On the contrary, using a public router upgraded as cloudlet
(e.g., located at the university) requires a more sophisticated
security concept, which is an important aspect for our future

research. Placing a router-based cloudlet at the university can
achieve up to 20% temporal coverage gain for most students.
A temporal coverage up to 97.4% for an individual user can
be achieved by placing cloudlets at both crucial places.

Next, we understand the daily mobility impact on the
temporal coverage of router-based cloudlets (cf. Fig. 7). As
expect, it is more difficult to achieve temporal coverage for
users with a higher entropic lifestyle (cf. Fig. 7a). In contrast,
upgrading user’s home router is sufficient to achieve more than
90% temporal coverage over an entire day for a user with low
mobility entropy (Hm = 0.25).

Considering a higher number of router-based cloudlets, we
observe a slight gain of the temporal coverage (cf. Fig. 7b-
7d). This results from the fact that much more cloudlets are
needed if the user is on the way; due to the user’s mobility
and the cloudlet’s range restriction the connect time is shorter,
and thus the temporal coverage of a single cloudlet is smaller
compared to the stationary case. For instance, Figure 8 shows
the cumulative density function for achieving more than 99%
temporal coverage at a walk of 10min or longer; for 80% of
all transitions it is required to access less than 10 cloudlets.

V. DISCUSSION AND LIMITATIONS

We conducted an automatic self-tracking user study with 30
participants over four weeks to collected human mobility data.
On average, we have data accounting for more than 80% of
the time since the phones have been deployed. The missing
data can be explained due to data corruption or powered-off
devices. Especially, the error of powered-off devices is hard
to avoid since users often turn off their phones at night or the
battery dies. Therefore, we only consider time ranges in our
study where enough location values of the user are available.

We saw that most of these participants live an entropic
lifestyle, which is typical of students. Selecting another target
group, for example, office workers with better organized daily
routines and lower mobility entropies compared to students,
we would expect similar results; cloudlets located at their
homes and work places are crucial for achieving high temporal
coverages, which we will investigate in future research.

Moreover, the conducted user studies and our findings
are limited to urban environments, where we find a dense
distribution of wireless home routers. In future we plan to
investigate the temporal coverage aspect of cloudlets in rural
areas as well, and show up ways to achieve an adequate



temporal coverage there, e.g., by upgrading cellular antenna
towers or street lamps as cloudlets with low latencies.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the coverage issue of cloudlets
from an end-user’s point of view. We argue that temporal
coverage is more important for the user’s experience than
spatial coverage considering his daily mobility behavior. We
further collected two comprehensive datasets to study and
understand human mobility as well as temporal coverage
of router-based cloudlets. The results showed that students
mainly stay at two places, their homes and university, which
represent a large part of the temporal coverage. The remaining
rate at which coverage increases heavily depends on the user’s
mobility pattern. Our findings can be used to place router-
based cloudlets at the right locations and estimate the number
needed to achieve a certain coverage in urban environments.

In future work, we plan to investigate whether smart street
lamps can be upgraded as cloudlet and use for a large-scale
deployment by analyzing the coverage aspect. Utilizing sta-
tionary street lamps - one of the densest powered infrastructure
in urban environments - we would further extend the router-
based cloudlet infrastructure. Moreover, we will take greater
account of the mobility of end-users to deliver computational
results through the proposed computing infrastructure.
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