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Abstract—The drawbacks encountered in today’s cloud com-
puting infrastructures have led to a paradigm shift towards
in-network processing, where resources in the core and at the
edge of the network are leveraged to perform computations.
This can lead to decreased costs and better quality of service
for users, e.g., when latency-critical applications are executed
close to data sources and users. Deploying applications or parts
thereof on these infrastructures requires to place operators (i.e.,
functional components of applications) on available resources in
the network. Solving large instances of this problem in an optimal
way is known to be computationally hard and, thus, practically
unfeasible. While heuristic approaches exist, they mostly aim at
placing functionalities on homogeneous nodes or make unrealistic
assumptions for edge computing environments.

To address this issue, this paper studies the placement problem
in the context of a 3-tier architecture consisting of cloud, fog and
edge devices. We provide a comprehensive model and propose
a heuristic approach to the problem, in which we introduce
constraints on the placement decision to limit the possible solution
space, leading to a decrease in the solving time for the problem.
These constraints exploit the characteristics of our 3-tier network
architecture. To demonstrate the feasibility of the approach, we
present a general framework that supports different types of
heuristics. We validate the approach by implementing example
heuristics for each type. We show that our approach can scale
to large instances, i.e., it can significantly reduce the resolution
time to find a placement solution while introducing only a small
optimality gap.

I. INTRODUCTION

With the proliferation and increased number of devices at
the extreme edge of the network, today’s cloud computing
infrastructures suffer from high latencies, congested core net-
works, and they furthermore lack mobility support and location
awareness [1]. The new paradigm of in-network processing can
be summarized as what has been named fog computing [1], [2]
or edge computing [3], [4]. In-network processing complements
cloud computing by leveraging devices in the network and at its
edge for storage [5] and computations [6]. These devices can act
as cloudlets [7] to dynamically instantiate required services or
applications. This requires to make decisions on where to place
functional parts of applications, i.e., operators, given potential
nodes with free computing resources in the network. In the
context of edge computing, these operators might be realized
on a varying level of granularity, ranging from unikernel-based
implementations [8] and container-based microservices [9] to
full-size virtual machines. Being able to make quick and cost-
efficient placement decisions in those environments is crucial
to minimize the provisioning time of services and therefore,

provide good quality-of-service to users. While the general
operator placement problem has been extensively researched,
especially in the domain of complex event processing, most
of the existing works consider homogeneous environments,
e.g., the placement of operators or network functions in data
centers, and focus on the optimization of either resource
consumption of computing nodes or on network metrics. In
contrast, we consider a 3-tier architecture, consisting of edge,
fog, and cloud nodes, with each of these tiers having different
characteristics in terms of placement cost, link quality and
computational capacity. When mapped to this heterogeneous
environment, the operator placement problem becomes more
challenging and existing solutions become non-applicable
because many assumptions do not hold any more. The general
operator placement problem is a variant of the well-known task
assignment problem and therefore is NP-hard [10], meaning
that for large instances, it cannot be optimally solved in a
reasonable amount of time. In in-network processing scenarios,
however, we are required to make quick placement decisions
in order to ensure quality-of-service for the users. An example
application where this is relevant is the processing of sensor
data from Internet-of-Things (IoT) devices at the edge of the
network [11]. Being able to make placement decisions quickly
also allows for frequent reconfiguration. For instance, this is
required in case of user mobility or changes in service demands.
Therefore, reducing the time it takes to compute an assignment
of operators to network nodes is crucial in large-scale dynamic
environments.

In this paper, we target scalable in-network operator place-
ment. In particular, we exploit the heterogeneity of the 3-tier
architecture of the in-network processing infrastructure and
propose heuristics that impose constraints on the placement
decision and therefore limit the possible solution space, leading
to a decrease in solving time for the placement problem. To this
end, we define two general heuristic approaches that take into
account our layered hierarchy of edge, fog and cloud nodes:
(a) restricting the placement of a certain operator to a subset
of nodes and (b) enforcing the colocation of operators on the
same nodes. We also investigate a special case of the first
approach by pinning operators, i.e., enforcing their placement
on specific nodes. For each of our heuristic approaches, we
implement example instances to demonstrate the feasibility
of this approach. We show that this approach significantly
reduces the time required to compute the placement while
only leading to a small optimality gap. To the best of our



knowledge, this is the first paper that studies scalable in-network
operator placement heuristics in large-scale heterogeneous edge
computing environments. In summary, this paper provides three
main contributions:
• We provide a comprehensive model for the heterogeneous

placement problem for in-network processing in a 3-tier
architecture consisting of edge, fog and cloud nodes.

• We propose a scalable yet efficient approach to reduce
the solving time of the placement problem by introducing
two general classes of heuristics: placement restriction
and operator colocation.

• For each of these classes, we implement representative
instances and evaluate their impacts on reducing the
solving time for the placement problem in different in-
network processing scenarios. We furthermore investigate
how the combinations of the proposed heuristics perform.

The remainder of this paper is organized as follows: Section II
reviews related work. Section III describes our system model.
Our approach for operator placement is presented in Section IV
and evaluated in Section V. We conclude the paper in
Section VI.

II. RELATED WORK

We summarize the state-of-the-art of the problems relevant
to the in-network operator placement problem, from which we
motivate our work.

Operator Placement: The problem of operator placement
has been studied extensively. We can distinguish between
network-agnostic [12], [13] and network-aware approaches [14]–
[16]. The former do not consider network characteristics (e.g.,
the latency and available bandwidth on the links), while the
latter do. Considering network characteristics is crucial in the
edge computing scenarios we examine because delays have
a considerable impact on the delivered quality-of-service. It
therefore makes sense to consider both the network and the
resource dimension (i.e., how many resources are available
at specific nodes and what the costs of placing functionality
on the nodes are). Our proposed model therefore considers
both the network and the resource dimension in the operator
placement problem.

Pietzuch [14] and Rizou [15] present approaches to mini-
mize the network usage. However, they do not consider the
differences in placement costs or constraints such as available
bandwidth on the network links. User-defined constraints for
the placement are introduced in [17], but no network costs are
taken into account. Several works such as [16] and [18] do
not allow the placement of multiple operators on one node,
or consider an equal number of operators and nodes [19]. We
argue that these are unrealistic assumptions for edge computing
scenarios. Others assume uniform capacity of the processing
nodes [10] or restrict the underlying topology, e.g., to a tree
topology [20]. In contrast, our heuristics do not have these
restrictions.

Lakshmanan et al. [21] survey and classify placement
strategies for data stream systems. They also provide an analysis

regarding which of the surveyed approaches is applicable in
which domain. Similar to our work, Cardellini et al. [22]
provide a comprehensive model for the operator placement
problem. However, in their scalability analysis of the problem,
only a homogeneous environment is considered.
Virtual Network Embedding: The problem of operator place-
ment has some similarities to the virtual network embedding
problem, e.g., the placement of virtual network functions
(VNF) [23]. However, virtual network embedding mostly deals
with the placement of virtual networks or virtual network
functions in data center environments [24]. Compared to the
problem we address in our paper, the infrastructure on which
the network functions are placed are more homogeneous wrt.
the resources they offer. In contrast to that, we address the
heterogeneity of nodes on the different layers (edge, fog
and cloud). Furthermore, existing work on VNF placement
considers only one data source [25], whereas our operator
graphs can have multiple data sources.
Edge/Fog Resource Management: Compared to resource
management in cloud data centers, resource management in
edge/fog environments is more challenging because fog nodes
are more heterogeneous, and uncertainties are imposed by
multiple factors such as user mobility. While it is still not
available yet, a general centralized framework for holistic
fog resource management is envisioned. Based on this vision,
a handful of works have been carried out for fog resource
allocation and job scheduling [26]–[29]. Recently, Wang et
al. propose a service entity placement strategy for edge
computing [30], but it is highly tailored for the social virtual
reality application scenario. While falling also into this category,
our work considers a new 3-tier heterogeneous architecture and
incorporates various application scenarios by allowing more
flexibility on both the number and the location of sources and
sinks, with the goal of achieving scalability while maintaining
efficiency. To the best of our knowledge, this paper is among
the first attempts for this problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the formal model for the in-
network operator placement (INOP) problem. Based on the
introduced model, we formulate the placement problem with
an integer linear program (ILP).

A. Underlay Network

In the in-network processing scenario, the underlay network
provides resources for both computing and communication.
We model the underlay network as an undirected graph G =
(V,E), where V is the set of underlay (physical) nodes on
which data processing and analytics can be carried out and
E = {〈u, v〉 |u,v∈V } is the set of links interconnecting the
nodes. Each node v ∈ V is also given a capacity Cv, which
denotes the maximum computational load that node v can
handle. For each link e = 〈u, v〉 ∈ E, we consider that its
capacity is upper-bounded by its bandwidth Be. We assume
that routing in the network is according to shortest paths, which
is in line with current data communication networks.



B. Operator Graphs

In typical in-network processing scenarios, a large volume of
data is generated by monitoring devices (known as sources) and
will need to be processed step by step to produce final results
to feed actuators (known as sinks). To characterize the resource
requirements of each job, we introduce operators, which are
independent data processing components, and all relevant
operators constitute a job. Consequently, we represent each
data analytics job in the system with an operator graph, which
is modeled by a directed acyclic graph (DAG) H = (O,F ),
where O gives the set of operators (including sources and sinks)
and F ⊆ {〈o1, o2〉 |o1,o2∈O} represents the data flows between
the operators. This operator graph represents the logical flow
between data sources, operators and sinks. Note that an operator
graph can have multiple sources and sinks simultaneously.
Each operator o ∈ O is characterized by a workload wo, which
represents the computational capacity that is required to execute
the operator. For each flow 〈o1, o2〉 ∈ F , fo1,o2 denotes the
average bandwidth requirement for the transfer of data between
the two operators o1 and o2. Note that for the case of multiple
operator graphs, we can actually build a dummy operator graph
by obtaining the union of the operators and flow sets of all
the operator graphs. Therefore, with a bit abuse of notation
we will use H to denote the general dummy operator graph
for ease of expression.

C. Operator Placement

The INOP problem aims to make decisions on the placement
of operators on the underlay nodes. We introduce decision
variables to capture the structure of decision-making. First, we
introduce xo,v ∈ {0, 1}, which characterizes the placement
decision of each operator o ∈ O to every underlay node v ∈ V .
We set xo,v = 1 if operator o is placed on node v; otherwise
xo,v = 0. As every operator can only be placed on exactly one
node, we have to enforce the constraint∑

v∈V
xo,v = 1,∀o ∈ O. (1)

In addition, operators have to be placed subject to node capacity
constraints, i.e., ∑

o∈O
xo,vwo ≤ Cv,∀v ∈ V. (2)

For a pair of operators o1 ∈ O and o2 ∈ O, where 〈o1, o2〉 ∈
F and each underlay link 〈u, v〉 ∈ E, we introduce indicating
variables yu,vo1,o2 ∈ {0, 1} to represent whether flow 〈o1, o2〉
will be routed through underlay link 〈u, v〉. The bandwidth
constraints for the underlay links should not be violated, i.e.,∑

〈o1,o2〉∈F

yu,vo1,o2fo1,o2 ≤ Bu,v,∀〈u, v〉 ∈ E. (3)

As we adopt shortest-path-based routing in the underlay
network, yu,vo1,o2 actually depends on both xo1,v and xo2,v . More
specifically, for all 〈o1, o2〉 ∈ F , we have

xo1,u =
∑
v∈V

yu,vo1,o2 and xo2,v =
∑
u∈V

yu,vo1,o2 . (4)

We assume that the sources and sinks are pinned, i.e., these
placements are given and cannot be altered. This constraint
is practically motivated because we assume no control over
the sources of data (e.g., sensors and mobile phones) and
the consumers of data. Instead, our challenge is to place the
operators in between while ensuring low cost.

D. Cost Model
The objective of the INOP problem is to make placement

decisions to achieve cost effectiveness. We consider two types
of costs, namely, placement costs and link costs. For each
node v ∈ V , the cost for handling unit computational load
is denoted by pv. Addressing placement across stakeholder
borders, we assume heterogeneous costs for placing operators
on nodes. For a given operator o ∈ O and a given node v ∈ V ,
the placement cost is given by po,v . Therefore, the aggregated
placement cost is given by

P =
∑
o∈O

∑
v∈V

po,vxo,v. (5)

For each link 〈u, v〉 ∈ E in the network a cost qu,v is
associated, which can be used to represent quality-of-service
(QoS) attributes such as latency or the combined monetary cost
for using the link (e.g., across different network stakeholders).
Link costs occur whenever data transfer between two operators
uses an underlay link. The total link cost can be represented
by

Q =
∑
〈u,v〉∈E

∑
〈o1,o2〉∈F

qu,v · yu,vo1,o2 . (6)

We believe that the above two cost types are practical and
are generic enough to capture a wide range of real-world
performance metrics.

To conduct trade-offs between the two costs, we introduce a
parameter α ∈ [0, 1] to weigh the different costs. Given these
definitions, the total cost for a placement decision is given by

Cost = αP + (1− α)Q. (7)

E. Problem Formulation
Based on the presented model, we formulate the INOP

problem as follows: For a given underlay network, operator
graphs and predefined source-sink pinnings, find an assignment
for each operator to an underlay node, such that the cost
function (7) is minimal. More formally, we formulate the
problem with the following integer linear program.

min Cost

s.t. (1), (2), (3)

xo,v ∈ {0, 1}, ∀o ∈ O, ∀v ∈ V.

An example result of a simple problem instance can be seen
in Figure 1(a). Source-sink pinnings are shown by the solid red
lines. Red dotted lines represent a possible result as returned
by a placement algorithm. In our evaluation, we will consider
a more complex underlay network as well as different types
of operator graphs.
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Figure 1. Operator placement in a 3-tier network hierarchy.

IV. HEURISTIC APPROACH

To make the placement problem more tractable, we propose
an approach in which we use an ILP solver to compute both
the optimal solution and a solution that uses our heuristics. For
the optimal solution, the input file for the solver contains only
the definition of the graphs, alongside with the placement
costs and source-sink pinnings. Our heuristics modify the
original input problem for the solver in such way that additional
constraints are added. More specifically, they impose a set of
extra constraints on the placement decision variables xo,v.
According to [17], adding constraints can lower the time
necessary to compute a solution. In detail, we propose two
classes of heuristics that follow this approach: placement
restriction and operator colocation. We will show that this
strategy is more beneficial than the state-of-the-practice, such
as greedily placing all operators in the cloud. Before we present
the details about the heuristics, we first describe the 3-tier
architecture of the system.

A. Edge-Fog-Cloud Hierarchy

Contrary to previous work in this domain, we examine the
placement problem specifically in the context of in-network
processing, where we consider the network to be in a 3-tier
hierarchy, consisting of edge, fog and cloud nodes. Cloud
nodes represent data center infrastructures while fog nodes are
middleboxes or gateways for end devices. Edge nodes are the
end devices, where computations can also take place if sufficient
resources are available. We assume cloud nodes to be fully
connected, fog nodes to resemble a LAN/WAN topology and
edge nodes to have a connection to at least one fog node that
acts as a gateway for this edge node. Edge nodes are organized
in clusters, depending on which fog node they are connected to.
Furthermore, edge nodes have a probability to be connected to
more than one fog node and an ad-hoc connection probability
to other edge nodes following the device-to-device (D2D)
communication technologies. The characteristics in terms of
capacity, bandwidth and link costs we assign to these nodes
is described accordingly for different evaluation scenarios,
as we will see in Section V. Figure 1(b) shows the 3-tier
architecture with example devices in each tier. Our motivation
for the heuristic approach comes from the observation that
the 3-tier architecture of the in-network processing system has
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Figure 2. Different heuristic approaches.

some special properties that we could leverage for operator
placement. As an example, depending on the locations of the
sources and the sinks, we can restrict the placement of operators
to a certain subset of underlay nodes, such as underlay nodes
in a certain tier. In addition, we could pair operators to achieve
optimal decisions before placing the operators.

B. Placement Restriction

Placement restrictions limit the placement of an operator to
a subset of nodes (see Figure 2(a)), i.e., for each o ∈ O, we
define a subset V ′ ⊂ V and we set∑

v′∈V ′

xo,v = 1. (8)

This heuristic can be used to enforce the placement on nodes
with desired properties, such as low placement cost, good
link connections, or closer to the sources and the sinks. In
real-word deployments, one might also want to restrict certain
operations to a specific geographic region. One of the reasons
for this might be privacy considerations. For our evaluation,
we implement this heuristic as follows: For each operator
graph, we determine the locations of the sources and the sinks,
i.e., on which network tier they reside. If at least one of the
sources or sinks are located in the cloud tier, we restrict the
placement of the operator graph to the cloud and fog nodes
only. However, if either a source or sink is located at the edge
of the network, we try to avoid expensive cloud links and
restrict the placement of all the operators to either the edge
or fog tier. It is important to note that we do not consider
fog nodes to be either the source and sink of data, since we
consider them network middleboxes or gateway nodes that
do not produce or consume application data. Our placement
restriction approach can therefore be formalized as follows:

min Cost

s.t. (1), (2), (3), (8)

xo,v ∈ {0, 1}, ∀o ∈ O, ∀v ∈ V, ∀v′ ∈ V ′,
V ∩ V ′ = ∅.

A special case of placement restriction is operator pinning.
Being the most restrictive heuristic, it restricts the placement
of an operator to one particular node (see Figure 2(b)) only.
According to our model, for a pinned operator-node pair (v ∈
V, o ∈ O), we set xo,v = 1 to represent this constraint. For the
operator pinning heuristic, we implement the following logic:
For each operator graph, we try to pin the first operator, i.e., one
adjacent to a(one or multiple) source nodes. For the candidate
nodes to place this operator, we have to distinguish between



two cases: (a) a single source (or sink) and (b) multiple sources
(or sinks) connected to the operator. In the first case, candidate
nodes are the source node and its one-hop neighbors in G. In
the second case, we consider the two-hop neighborhoods of
each of the sources. Out of these subgraphs, we define the
candidate nodes as all nodes that appear in all these 2-hop
neighborhoods. Then, for each candidate node v, we compute
a penalty function s = αpo,v + (1 − α)q̄v, where o is the
operator to be placed, po,v is the placement cost and q̄v is the
average link cost of the edges that are adjacent to v. We then
pin the operator to the node with the lowest penalty value,
since this node will have the lowest weighted placement and
link costs to host this operator. Consequently, we obtain a set
P = {(o1, v1), . . . (on, vn)} of all operator-node pinnings and
it must hold that

∀(oi, vi) ∈ P : xoi,vi
= 1. (9)

Applied to our original model, pinning results in the following
optimization problem:

min Cost

s.t. (1), (2), (3), (9)

xo,v ∈ {0, 1}, ∀o ∈ O, ∀v ∈ V, P ∩ V = ∅.

C. Operator Colocation

While our model naturally allows for operators to be
colocated on one node, this heuristic enforces the colocation
of certain operators to one underlay node. Formally, we define
a pair of operators (o1 ∈ O, o2 ∈ O), and it must hold true
that ∃v ∈ V , xo1,v = xo2,v = 1. As an example, Figure 2(c)
depicts the colocation of operators o2 and o3. Colocation of
operators requires a trading off between placement costs and
communication costs. Consider a scenario where operator o1
precedes operator o2. Colocating these two operators on one
underlay node is most likely beneficial to the overall utility of
the system if operator o2 is lightweight in terms of resource
utilization and placement costs, and the communication be-
tween o1 and o2 requires high bandwidth. To model this, we
compute a score for each pair of neighboring operators o1 and
o2, i.e., 〈o1, o2〉 ∈ F , defined by

s =
fo1,o2

α(p̄o1,v + p̄o2,v + wo1 + wo2)
, (10)

where fo1,o2 is the bandwidth of the flow between the two
operators, p̄o,v denotes the average placement cost of the
operator and wo the workload of the operator. This score
will favor the colocation of operators with high bandwidth
demands, while taking into account their placement costs and
workload. We then select no operator pairs with the highest
score to colocate. Empirically, we determined no = b|O|/5c.
Mapped to our optimization problem, we then get a set
OC = {(o1, o2), . . . (on, on+1)} for which the following must
hold:

∀(oi, oj) ∈ OC : ∃v ∈ V, xoi,v = xoj ,v = 1 (11)
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Figure 3. Flowchart of the proposed heuristic framework.

Our modified problem for the colocation of operators can
therefore be defined as follows:

min Cost

s.t. (1), (2), (3), (11)

xo,v ∈ {0, 1}, ∀o ∈ O, ∀v ∈ V, OC ∩ V = ∅.

D. Strategies for Combining Heuristics

While the three heuristics described above can be applied
individually, we can think of ways to combine them, i.e.,
to apply more than one heuristic for a given input problem.
Figure 3 shows a flowchart that describes the different possible
ways of combining our heuristics. We first have the option
to pin certain operators to an underlay node. Then, the more
general, i.e., less restrictive, heuristics restriction and colocation
can be applied independently. It is important to note that these
combinations do not work isolated from but influence each
other and might be contradictory. This is especially true for
the pinning heuristic, as we will see. For our evaluation, we
consider the following three combinations of heuristics:
COMB-1: As the first combination, we apply pinning and then
restriction of operators. Note that the restrictions will not be
applied to already pinned operators, because this might lead to
contradictions, e.g., the pinning computes the placement of an
operator to a node which is not in the set of possible nodes
according to the restriction heuristic.
COMB-2: For this combination, we first apply pinning and
additionally the colocation of operators. Similar to COMB-1,
operators that are pinned will not be in the candidate set
considered for colocation. For example, consider that the
pinning heuristic fixes the placement of an operator o1 on
a node A, and the colocation heuristic enforces the colocation
of operators o1 and o2, but the capacity of node A is less
than the workload of o1 and o2 combined. Therefore, when
pinning is applied before other heuristics, we do not consider
the pinned operators for other heuristics applied afterwards.
COMB-3: Lastly, we leave out the pinning heuristic and
combine restriction with colocation. Contrary to the previous
combinations, this does not require to exclude operators from
the heuristic that is applied second.



V. EVALUATION

To evaluate our approach, we built a simulation tool in
Python. To model the problem, we use Pyomo1 and invoke
GLPK2 as a solver. We first provide an overview of our
experimental setup before evaluating the benefits in solving
time and the cost overhead of our heuristics. We conclude
our evaluation by discussing the results with respect to the
trade-off between resolution time and cost overhead.

A. Experimental Settings

We consider different underlay networks for our experiments,
as described in Table I. To take into account the different
characteristics of nodes and connections at the different layers,
Table II summarizes the parameters we set for the capacity,
link costs and available bandwidth. In our evaluation, we use
the link cost to model the latency induced by using a particular
link. To represent different applications that are to be deployed
in the network, we define different types of operator graphs
as shown in Figure 4. Each of the graphs feature a different
number of operators (labeled oi), sources and sinks. In addition,
the sources (labeled src) and sinks (labeled snk) are located at
different underlay layers. For example, if an operator graph has
both its sources and sinks in the edge layer, this models edge
analytics of sensor data where the results are also consumed
by edge devices (Figures 4(a), 4(d) and 4(i)). In practice, this
kind of operator graph could represent an IoT application, such
as a smart home automation. As another example, we can
also model classic big data analysis by having sources at the
edge and data sinks at the cloud layer (see Figures 4(c) and
4(j)). A hybrid case is depicted in Figures 4(b) and 4(e). In
practice, this hybrid case refers to applications where parts
of the computed results are required by end devices at the
edge and at the same time are sent to the cloud for storage
or further analysis. In addition, the graphs depicted in Figures
4(f), 4(g) and 4(h) model the case where the data sources
are located at both the edge and cloud layer. An example
application for this is the combination of sensor data gathered
at the edge with knowledge databases hosted on powerful
servers. In conclusion, the operator graphs we consider for our
evaluation allow to capture a variety of application scenarios
where edge computing is relevant. From these different operator
graphs, we derive different input sizes by combining a different
number of operator graphs to be placed, labeled gs1 through
gs11. The properties of those are summarized in Table III. The
operators were assigned a random workload between 2 and 5.
The required bandwidth between the operators varies between
5 and 20. Placement costs are also randomly generated within
the range of 10 to 30. For each configuration (i.e., an underlay
network with the different input sizes), we report the average
results of 5 simulation runs. We set α = 0.5, meaning that
placement and link costs are weighted equally. We implemented
our heuristics as described in Section IV.

1https://www.pyomo.org/
2https://www.gnu.org/software/glpk/

Table I
UNDERLAY NETWORK GRAPHS

Underlay 1 Underlay 2 Underlay 3
Cloud Nodes 2 5 10
Fog Nodes 5 10 20
Edge Clusters 2 3 5
Edge Nodes 16 36 70
Edge-fog 0.1,0.3 0.1,0.3,0.2 0.1,0.3,0.2,
Connection 0.1,0.4
Probability
Edge-fog 0.1,0.3 0.1,0.3,0.2 0.1,0.3,0.2,
Connection 0.1,0.4
Probability

Table II
PROPERTIES OF NODES

Cloud Nodes Fog Nodes Edge Nodes
Capacity 100 random(20,60) random (5,20)
Link Cost N (200, 2500) N (20, 4) N (5, 1)
Bandwidth 10,000 random(1000,5000) random(10,30)

Table III
INPUT SIZES FOR THE OPERATOR GRAPHS

Operator Source Sink
Graphs/ Sources Sinks locations locations

Operators (Edge/Cloud) (Edge/Cloud)
gs1 5/17 8 6 8/0 4/2
gs2 6/20 10 8 10/0 4/4
gs3 7/24 11 9 10/1 4/5
gs4 8/28 14 11 11/3 5/6
gs5 9/32 15 12 12/3 6/6
gs6 10/35 17 15 13/4 8/7
gs7 11/39 19 16 15/4 9/7
gs8 12/44 20 17 16/4 10/4
gs9 13/47 21 19 17/4 12/4
gs10 14/50 22 20 17/5 12/5
gs11 15/54 25 22 20/5 13/6

B. Performance Analysis

First, we analyze the performance of our proposed heuristics,
i.e., the reduction in solving time for the placement problem.
Figure 5 shows the results of this analysis for the different
network sizes. The time it takes to run the heuristics, i.e.,
the overhead they introduce, is included in the measurement
times. Except for applying the colocation heuristic alone, all
the approaches reduce the resolution time, regardless of the
size of the underlay network or operator graph input size.
Colocation alone can increase the resolution time because it
takes time to determine the possible combinations to consider.
All our other approaches drastically reduce the resolution
time. For the different problem input sizes, we were able
to achieve decreases of 20 to 80 percent. It is important to
emphasize the general trend of a decrease in resolution time
as the graph size increases. This validates that our heuristics
scale and become even more beneficial in complex problem
instances. Out of the implemented approaches, applying pinning
together with restriction was the fastest most of the time.
However, we will see in the next subsections that this is also
the approach that introduces the largest optimality gap. Pinning
alone gives us less benefit for the resolution time because
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Figure 5. Evaluation results on resolution time.

only the first few operators are pinned. Furthermore, fixing
the first operator might add complexity for the placement of
the remaining operators in the graph. When also applying
colocation after pinning, the resolution time is lowered because
fewer reasonable placement options are available. In our
experiments, restriction and restriction alongside colocation
performed similarly wrt. the benefit in resolution time.

C. Optimality Gap

Applying our heuristics will inherently lead to a decrease in
the system utility, i.e., the value of the cost function (7) will
increase. However, given the benefits regarding the resolution
time, this is a trade-off one might be willing to accept in
practice. Especially in highly dynamic scenarios, reconfiguring
placement decisions is time-critical due to quick changes
in network characteristics. In this section, we analyze the
optimality gap of our implementation, i.e., we quantify the
increase of the cost function for our approaches compared
to solving the problem optimally. In Figure 6, we plot this
optimality gap. In general, the maximum increase we can
observe is only slightly above 20% but is much lower on
average. The highest increase is observed whenever pinning is
involved since it does not consider the link cost that it might
imply for the operators placed later on. The cost difference is
the lowest for the colocation heuristic alone because we have

more nodes than operators to choose from. Therefore, even
though we enforce the colocation of operators, we can find a
node that has a combined placement cost close to the optimum.
Restriction alone and restriction combined with colocation
perform only slightly worse. This is because compared to
colocation alone, not all nodes are considered for the placement.

D. Dissecting the Placement Decisions

Figure 7 shows how our proposed approaches influence the
placement decisions with respect to the different layers, i.e.,
how many operators are placed on the cloud, fog or edge
layer. We plot the number of operators on different layers for
the largest problem instance (Underlay 3, gs11). From the
results, we can make the following observations: Compared
to the optimal solution, pinning is more aggressive in terms
of placing operators on the edge, i.e., close to where most of
our data sources are located. Since restriction always allows
the placement on fog nodes (regardless of the location of data
sources and sinks), we can clearly see a trend towards fog
placement when applying the restriction heuristic either alone
or in combination (COMB-1 and COMB-3). Colocation applied
alone leads to nearly the same results as the optimal solution;
recall however that this increases the resolution time in most
cases. With applying colocation after pinning (COMB-1), we
see a slight shift towards cloud placements since after pinning,
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Figure 7. Dissecting the operator placement decisions.

we might have less placement possibilities—especially on the
fog layer.

E. Discussion

Based on the results obtained, we now discuss the trade-off
between the saving in resolution time and the cost overhead
of our heuristics. Figure 8(a) depicts this trade-off with the
resolution time on the x-axis and the cost overhead on the
y-axis. Each dot represents one result for the different graph
sizes. The size of each dot represents the size of the underlay
network. Since the colocation heuristic alone often increases
the resolution time, sometimes dramatically and therefore does
not offer a good trade-off, we omit it out in the plot. From
the figure, we can first observe the scalability of our approach
since there is a trend towards a bigger saving in resolution
time for larger underlay sizes. Second, we can see the trade-off
between cost optimality gap and saving in time. For instance,
COMB-1 leads to good results in terms of time saving but also
has one of the highest optimality gaps and a large variance
in the optimality gap. Applying restriction alone consistently
leads to low cost, however, there is more variance in the
saving in resolution time. If we apply restriction and colocation
(COMB-3), the results are similar, but for larger underlay sizes,
we can see a slight benefit for COMB-3. The similarity of
these two is an interesting observation, as we imagine this
to be highly dependent on the actual implementation of the
colocation heuristic and we plan to examine this in future work.

Compared to these, pinning and COMB-2 were found to be
the weakest in terms of the trade-off.

We also compare our results with a greedy algorithm for
operator placement. This algorithm places every operator on
cloud nodes only and chooses the cloud node with the lowest
placement cost for each operator. This is the current practice
one would employ to place cloud services without considering
the edge or fog as possible processing layers. We plot the
results of this greedy placement strategy for the largest underlay
network (Underlay 3) in Figure 8(b). We observe that while
the saving in resolution time is comparable to our heuristics
(with a maximum saving of around 90%), the greedy algorithm
performs much worse in terms of cost. For larger graph sizes,
the costs are three to four times higher than the optimal solution.
This is mainly because for the greedy solution, link costs are
substantially higher since all data has to be transferred to the
cloud, even for operator graphs where data sources and sinks
all reside in the edge layer. Compared to that, when applying
our heuristics, we saw a maximum increase in the total costs
of way below 10% on average.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to tackle the
problem of operator placement in a 3-tier edge-fog-cloud
infrastructure by applying placement constraints. We introduced
two general classes of heuristics to do so. For each of these
classes, we implemented sample representatives to demonstrate
their feasibility. By evaluating our approach, we were able to
show that the resolution time can be decreased dramatically
while only leading to a small optimality gap. Our findings
can be applied to a variety of practical problems in the
emerging domain of edge computing, one of which is the
placement of containers. For instance, the popular container-
based virtualization framework Docker3 only considers the
available resources and disregards network characteristics when
orchestrating different containers in a cluster. In future work,
we will implement our proposed heuristics in such real-world
systems and incorporate additional heuristics that allow the re-
use of operators across different operator graphs. Furthermore,
we plan to provide a more detailed cost model for the different

3https://www.docker.com/
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processing layers and examine methods to adapt a given
placement at runtime. This might be necessary due to changes
in the underlay network (e.g., due to user mobility) or a new
application being deployed in the network.
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placement for social virtual reality applications in edge computing,” in
Proc. INFOCOM, 2018.


