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Summary. The way mobile users store and share their data today is
completely decoupled from their current usage context and actual inten-
tions. Furthermore, the paradigm of cloud computing, where all data is
placed in distant cloud data centers is seldom questioned. As a result,
we are faced with congested networks and high latencies when retriev-
ing data stored at distant locations. The emergence of edge comput-
ing provides an opportunity to overcome this issue. In this paper, we
present vStore, a framework that provides the capabilities for context-
aware micro-storage. The framework is targeted at mobile users and
leverages small-scale, decentralized storage nodes at the extreme edge
of the network. The decision where to store data is made based on rules
that can either be pushed globally to the framework or created individu-
ally by users. We motivate our approach with different use cases, one of
which is the sharing of data at events where cellular networks tend to be
congested. To demonstrate the feasibility of our approach, we implement
a demo application on the Android platform, leveraging storage nodes
placed at different locations in a major city. By conducting a field trial,
we demonstrate the key functionalities of vStore and report on first usage
insights.

Key words: mobile storage, edge computing, fog computing, context-
awareness

1 Introduction

Smartphones today have long surpassed their predecessors in terms of computing
power, sensory capabilities and application diversity. Mobile phones nowadays
feature a variety of different applications. Data captured by or sent to those
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applications is usually stored at a distant server, i.e., in cloud computing infras-
tructures. In any case, this location is predetermined by that particular applica-
tion. Furthermore, we see a plethora of different applications that serve the same
or similar purpose (e.g., Dropbox, Google Drive and OneDrive for cloud-based
data storage). Although users sometimes use different services to store the same
data, the different applications remain isolated from one another and therefore
hinder the sharing of data across them.

Recently, Cisco predicted that by the year 2020, 70 percent of the world
population (i.e., 5.5 billion people) will be mobile users1. According to their
predictions, 72 percent of those will use so-called smart devices, generating a
traffic of over 30 exabytes every month. It is fair to assume that this will lead
to highly congested core networks. This in part can be avoided if mobile data
is stored closer to where it actually is retrieved. More generally, the way mobile
data is stored and accessed today is completely decoupled from how the data is
actually used and what the current usage contexts of users and their intentions
are. Therefore, from the current state of the art, we can derive the following
drawbacks and limitations:

1. High bandwidth utilization in the core network: Despite often being retrieved
only in a locally restricted area, all data is first sent to the cloud, thus creat-
ing high bandwidth utilization and possible bottlenecks in the core network.
This is going to worsen as more large-volume data, such as video, will be
generated in the future.

2. High latency when retrieving data from a distant cloud. For data such as
video, this has a direct impact on the perceived quality of service and there-
fore is undesirable.

3. No efficient sharing of data across different applications and users.

In this paper, we introduce vStore (virtual store), a framework that abstracts
from concrete storage locations and—based on the current usage context and
intentions of the user—chooses the most suitable storage location. From a net-
working point of view, vStore reduces the bandwidth utilization in the core net-
work and the latency when retrieving nearby copies of requested data. From the
user perspective, vStore provides context-awareness and facilitates the sharing
and reuse of data across locations and applications. Furthermore, vStore enables
network operators and businesses to provide better quality of experience for their
customers by providing proximate cloudlet storage. Our novel framework takes
into account the following when deciding on where to store data:

– Type of data, such as photo, video, contacts, etc.
– Usage context as provided by the mobile device. The context includes for

example time, location, ambient noise level and network conditions.
– User intention, such as private use or sharing of data.

Instead of solely relying on either local (i.e., on the mobile device itself) or cloud-
based storage, we also consider the use of cloudlets [4], small-scale micro-data

1 https://newsroom.cisco.com/press-release-content?articleId=1741352
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centers located at the edge of the network that can be leveraged for computa-
tions. In the future, cloudlets on various kinds of network nodes, such as WiFi
gateways, cellular base stations or middleboxes, could be used for storing small
pieces of data (e.g., a photo taken at an event or point of interest). With vStore,
we consider the heterogeneity of those network nodes in terms of the bandwidth
and latency they can provide in order to optimize the placement decision. To
this end, we implement our framework for Android devices and deploy storage
nodes in a major city to demonstrate the feasibility of our approach. To the
best of our knowledge, this is the first framework that provides the functionality
to abstract storage locations and enables to perform storage decisions based on
rules that take into account the current context of the user and heterogeneous
edge infrastructures.

The remainder of this paper is organized as follows: In Section 2, we give an
overview of the research topic and related work. Section 3 presents our idea of
context-aware storage at the edge. We describe the design of our system and its
components in Section 4. The results of our case study are presented in Section 5.
Finally, we conclude the paper and given an outlook on future work in Section 6.

2 Background & Related Work

Before describing our approach to micro-storage at the edge, this section intro-
duces the underlying concepts and reviews previous work related to ours.

2.1 Shifting the Focus from Cloud to Edge

While cloud computing has been the prevailing way for offloading data and
computations [1, 2, 3], recent research has begun to identify the drawbacks of this
approach [6, 7]. Based on this, we can observe a shift from the cloud towards the
edge of the network [5]. Known as fog computing [8, 6] or edge computing [10, 11],
this new paradigm makes use of resources close to the users and their data. This
includes leveraging opportunistic devices present in one-hop distance, such as
standard WiFi routers [12, 13]. Compared to cloud computing, the benefits of
this approach include saving bandwidth in the core network and reduced latency.
The concept of cloudlets [4] is promising to provide lightweight virtualization of
applications for their deployment on resource-constrained devices. We argue that
by applying this concept for the storage of data, we can reduce the amount of
data stored in distant cloud infrastructures and at the same time provide better
quality of service to mobile end users.

2.2 Context-Awareness

We aim to build a framework that makes storage decisions based on rules that
take into account the current context of the user. Context is any information that
characterizes a current situation [14] and according to Abowd [15], a system is
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context-aware if it uses context to provide relevant information and/or services
to its users. In our system, contextual information should influence the storage
decision. Examples of relevant context include from where the user retrieves
the content, where one is located or what the network conditions are alike. In
general, we can distinguish between low-level context (i.e. raw and unprocessed
sensor data) and high-level context that is inferred from (often multiple) low-
level context information.

As mobile phones today feature a multitude of built-in sensors, they are
able to capture diverse contextual information. The most prominent contextual
information is the location. However, it is easy to see how we can extend this to
more sophisticated context. Especially fusing data from hard sensors (e.g., a GPS
receiver or microphone) with data from soft sensors (e.g. one’s calendar entries)
can generate meaningful higher-level context. As an example, let’s assume a
user is located at a certain geo-coordinate. Adding a list of point-of-interests, we
might derive that he or she is at a sports stadium. Further addition of microphone
readings then might derive whether a sporting event is currently in progress. We
will later describe how vStore uses this kind of context information to make
storage decisions.

2.3 Mobile Storage

While offloading computations closer to the edge of the network has been studied
previously, the possibility to store data at the edge has seldom been examined.
Some previous works have proposed to complement cloud storage with an ad-
ditional layer at the edge of the network. The decision where to store the data
is often based on location alone [22], or data is synchronized with cloud stor-
age infrastructures [21]. Using cloudlets for storage in a peer-to-peer fashion has
been proposed by Yang et al. [24]. Other than location, network information and
usage patterns of files have been taken into account to make storage decisions
[25, 26]. In our work we do not limit ourselves to these but provide a general
framework that operates on rules, which can incorporate whatever contextual
information can be gathered by the devices.

Several approaches have been proposed for caching data, either in a hierar-
chical way [18] or collaboratively determined by content popularity [19]. Other
work combines caching with prefetching strategies based on predicted mobility
[20]. By definition, caching is non-persistent and in our cases, we need higher
retention times of the data (e.g., to enable sharing).

3 Context-Aware Storage at the Edge

We propose a novel approach to provide context-aware micro-storage to mo-
bile users. Figure 1 compares our approach with the traditional way of hav-
ing application-specific cloud resources for data storage (Figure 1(a)). Contrary
to that, we propose vStore, which makes decisions where to store data across
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application domains and takes into account heterogeneous storage nodes (Fig-
ure 1(b)). Furthermore, our system takes into account contextual information to
make the storage decision. We envision existing applications to use the framework
as a middleware in order to facilitate the exchange of data between applications.

App App

Homogeneous cloud storage

App

(a) Traditional
application-specific
cloud storage

App AppApp

vStore

Heterogeneous storage cloudlets

(b) Our proposed ap-
proach

Fig. 1: Comparison of approaches

3.1 Use Cases

To further motivate the need for vStore, we describe three use cases that benefit
from our approach. We base our observations partly on the results of a survey
we conducted that had a total of 51 participants. Participants were aged 16–40
and mostly students and researchers.

Sharing data at an event Especially during large-scale events, cellular net-
works are often congested [16]. A prominent example is football matches. Figure
2 shows measurements of the available cellular bandwidth during a match at
the Commerzbank Arena, a stadium in Frankfurt, Germany with a capacity of
51,500 spectators. Compared to the average bandwidth available in the stadium
when no match takes place, we can clearly see that the network quality decreases
tremendously. At some distinct events, such as goals occurring in the match, the
network collapses almost entirely. In such cases, edge cloudlets (that for instance
are deployed on several WiFi access points) can be useful to provide users with
storage services. Besides the obvious use case of storing data in the cloud for
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later use or sharing with people not present at the event, a more interesting use
case for edge storage arises when data is to be shared among people present at
the very same event. This type of sharing has been examined before in the con-
text of video streaming [17] but not in consideration of infrastructural support of
edge computing architectures. In our survey, over 50 percent of the participants
stated that they at least occasionally share data such as pictures at an event;
close to 20 percent of those almost exclusively with other people attending the
same event. Only 4 percent of our participants have never experienced congested
connections during events.

15:38:00

15:53:00

16:08:00

16:23:00

16:38:00

16:53:00

17:08:00

17:23:00

Time

0

5

10

15

20

25

30

35

40

M
B

it
s

Average Uplink (No Event)
Average Downlink (No Event)

First-Half Time Half-Time Break Second Half-Time

Goal 1 Goal 2
Cellular Network Downlink
Cellular Network Uplink

Fig. 2: Cellular bandwidth during a football match

Context-aware storage across applications In our survey, we questioned
participants whether the storage services they choose to use depend on (i) whether
the data is intended for private or public use, (ii) their current location and
(iii) the date and time of data capture. The results of those questions are de-
picted in Figure 3(a). We can clearly observe that the majority of users bases
the decision on where to store their data to a great extent on these three contex-
tual properties. Thus, we will consider them among other properties in vStore to
make context-aware storage decisions. Furthermore, some users upload the same
data to more than one storage service (Figure 3(b)). With the introduction of
vStore, we aim to provide a unified way to make this decision for the user.

Getting suggestions for data related to one’s current context When at
a certain location or when performing a certain activity, users often search for
information related to that specific context. With the capability to query our
framework for data that is similar to one’s usage context, we can provide users
with such kind of information. Coming back to the example of an event, over 78
percent of our surveyed participants at least sometimes retrieve data related to
an event they attend.
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(b) Upload of the same data to multiple storage services

Fig. 3: Survey results about the usage of multiple storage services

3.2 Problem Definition and Requirements

From the use cases motivated above, we define the problem we want to tackle as
follows: Given data that mobile users want to store and contextual information,
find the most suitable storage location. In order to provide context-aware micro-
storage as we envisioned, the system should fulfill the following requirements:
(i) storage location agnosticism, (ii) openness to extensions and third-party ap-
plications, and (iii) extensibility to implement new rules for storage decisions.
In the next section, we will describe the design of our system in detail and how
it fulfills these requirements.

4 System Design and Implementation

In this Section, we describe the design of our system and its individual com-
ponents. Figure 4 shows a high-level overview of our system. In the following
subsections, we will explain in detail the most important parts of our system,
including a demo application that makes use of vStore on Android phones.

4.1 Virtual Storage Framework

The storage framework is the main contribution of this paper. It provides in-
terfaces to applications in order to store and retrieve data while abstracting
from a concrete storage location. The framework collects current contextual in-
formation, maintains a list of available storage nodes and—based on a set of
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Fig. 4: System architecture

rules—makes the decision where to store the data. For each data item to be
stored, a unique identifier is generated that is later used to retrieve specific data
across storage nodes.

Context aggregator The task of the context aggregator is to collect the differ-
ent kinds of contextual information. In Figure 5, the architecture of this aggrega-
tor is summarized. To gather contextual information from the mobile phones, we
rely on three providers of such information: First, we make use of AWARE2, an
open source framework for context instrumentation on Android phones. Second,
the Google Places API provides a list of places that surround the user, their
type and the likelihood of the users being located at those places. Third, the
Android Connectivity API provides information about the network connectivity
of the device. In detail, we collect the following contextual information:

– Location: A plugin for AWARE provides location information using the Google
Fused Location API.

– Places: Each time a new location is available, we query the Places API for
a new list of places. We group the large amount of place types provided by
this API into three groups, namely points of interest (POI), event (such as
stadiums, city halls and night clubs) and social (such as restaurants, cafes and
bars).

2 https://www.awareframework.com
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– Noise: The ambient noise level is measured by an AWARE plugin through
the phone’s microphone. By configuring a threshold, we can determine if the
current environment should be considered as loud or silent.

– Activity: The user activity is provided by another plugin that internally uses
the Google Awareness API to identify the user’s current activity (e.g., still,
driving or walking).

– Network: We use Android’s ConnectivityManager and TelephonyManager to
fetch details about the user’s current connectivity situation (e.g. to what kind
of network the user is currently connected to).

– The time and date as reported by the phone’s operating system.

Context Aggregator

AWARE
Framework

Activity

Environment Noise

Location

Places Service

Broadcast 
(push)

Content Resolver 
(pull)

Network

Connectivity Manager 
Telephony Manager

Fig. 5: Context aggregator

Node Manager The node manager maintains a list of all available storage
nodes. When storage nodes are added to the framework, their type, location and
bandwidth need to be specified. Available nodes can then be queried according
to these properties. Before a node is stored in the internal database of vStore, the
node manager checks if the node is reachable. Node information can be updated
and deleted through an API.

Rules In our framework, rules are used to make the storage decision and are
evaluated by the matching engine, as described later. In vStore, rules can either
be defined globally or created individually by the users. A rule specifies certain
conditions that have to be fulfilled in order for that rule to be triggered. We
specify our rules to consist of three parts:

– Metadata properties: These denote for which MIME type and file size the rule
should be taken into account during the matching process.

– Context triggers: These properties determine under which contextual condi-
tions a rule is triggered. Any of the aforementioned contextual information can
be specified here. All of the configured contextual properties have to match
the context that is given at the time of evaluating the rule.

– Decision layers: The decision layers determine which storage nodes are chosen.
A rule can consist of several layers where each layer represents a possible de-
cision outcome. A layer can either be configured to match storage nodes that
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are of a certain type or that match certain constraints such as bandwidth or
distance to the user. A decision layer can also point to one specific storage
node. In this case, the file will be stored on this particular node. The deci-
sion layers are evaluated only if the first two tiers of the rule (i.e. metadata
properties and context triggers) are fulfilled.

The way we define rules follows the Event Condition Action (ECA) paradigm.
Mapped to our implementation, the event is the request to store a file, the
conditions are the triggers that have to be fulfilled, and the action is the execution
of a decision layer and, thus, the storage of a file on a storage node.

Latitude: 
Longitude: 

Place: 
Activity: 

Network:

48.8583701 
2.2922926 
POI 
Still 
4G

Context

Cloudlet
Distance: 200m

Bandwidth: 50MBit/s

Cloudlet
Distance: 5km

Bandwidth: 25MBit/s

4G eNodeB
vStore  

Framework 

…
Image Rule

Fig. 6: Example of storage location
matching Fig. 7: Storage node hierarchy

Matching engine The matching engine is the main part of the framework. It
makes the decision where to store data, given user data, contextual information,
a set of available storage nodes and rules as input. The matching process consists
of two steps: First, all rules are evaluated with respect to the configured trigger
conditions and the type of data. We only consider rules where these two parts
match the input. For instance, a rule that only applied to image files would
not be evaluated further if the data the users wants to store is a document.
Similarly, for the contextual information, let’s assume the rule specifies that it
only applies to files of a certain size and is restricted to a specific location or
within a range from a point of interest. If these properties do not match with the
file that is to be stored, this particular rule is discarded. In the second step of
the matching process, for each of the remaining rules that satisfy the metadata
and context triggers of the input data, a score s, 0 ≤ s ≤ 100 is computed to
determine the most detailed rule, meaning the rule that incorporates the most
contextual information. For instance, a rule that triggers within 150 meters of
a point of interest would be assigned a higher score than one triggering within
500 meters. We apply different weights α ∈ {0.1, 0.15, 0.2} to put more emphasis
on contextual information that is based on location. The rule with the highest
score is then chosen, and according to its decision layers (see previous section),
a storage node is then selected. In cases where the decision layers do not lead
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to a feasible solution, for instance because no nodes that fit the constraints are
available, the rule with the second highest score is chosen and evaluated next.
Figure 6 shows an example of a storage decision, in which a user takes a photo
near a point of interest. A rule triggers because the user is currently still and not
in motion, is connected to a 4G cellular network and at a point of interest. In this
example, this rule (labeled Image Rule in the figure) is the one with the highest
score, and in its decision layer, a cloudlet with a maximum distance of 200 meters
and at least 50 MBit/s of bandwidth is chosen to store the photograph.

4.2 Storage Nodes

Storage nodes are the devices that are available to store the data. In a real-
world deployment, a storage node could be hosted on a variety of devices, either
close-by or distant to the user. To take into account this heterogeneity, we define
different types of storage nodes as outlined in Figure 7. Besides cloud nodes, we
consider cloudlets, gateway nodes and nodes in the core net. The latter could
be represented by network layer middleboxes, which could have additional capa-
bilities to store data as it passes through those devices. Gateway nodes on the
other hand are devices to which users have a direct wireless connection to, such
as WiFi access points or cellular base stations.

In addition, we also consider private clouds as a type of storage nodes, for
instance systems such as ownCloud 3 that are owned by end users themselves.
Including this kind of nodes allows to define storage rules for the storage of
private data, i.e., data that is not shared among different users of the framework.

4.3 Configuration

The vStore framework can be configured externally. This mainly serves two pur-
poses: (i) initially retrieving available storage nodes and (ii) including global
rules for the placement decision. Defining global rules that are available on all
devices is important for users who do not wish to specify custom rules. This
ensures that at least some basic storage decisions can be made. To this end, the
framework relies on a central configuration file that is regularly retrieved and
updates available storage nodes and rules. However, in the future, we envision
the configuration of the framework to be managed in a distributed way. This
would for instance enable users who have the same or similar context to share
custom rules they have defined.

4.4 Demo Application

As a case study and to demonstrate the integration of the framework on a mobile
platform, we developed a demo application on Android phones. With this appli-
cation, users are able to (i) store their data on a storage node determined by the
matching engine of the framework, (ii) mark this data as either private or public,

3 https://owncloud.org
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(a) Contextual informa-
tion

(b) Contextual informa-
tion

(c) Own files

(d) Contextual files (e) List of rules (f) Custom rule creation

Fig. 8: Screenshots of the demo application

(iii) create custom storage mapping rules that are then used by the mapping en-
gine and (iv) get context-related data from other users. The application’s main
screen shows a summary of all current contextual information available (Figures
8(a) and 8(b)). Users can view their own files (Figure 8(c)) and are able to up-
load files on this screen. This can be done for public files (right pink button)
and private files (left pink button). To demonstrate the framework’s ability to
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retrieve files based on context, users can retrieve files with a similar context to
their current one (Figure 8(d)). Furthermore, the app shows all currently active
storage rules (Figure 8(e)) and allows for the creation of custom rules by the
user (Figure 8(f)).

We will use this application for our user study to conduct preliminary ex-
periments on storage rules in a heterogeneous city-scale environment. Details of
this evaluation are described in the next section.

5 Preliminary Results

In this section, we report on preliminary experiments we conducted using the
demo application we described in Section 4.4. We show the feasibility of our
approach by deploying several storage nodes in a major city and conduct a user
study by defining sample rules and evaluating the resulting storage decisions
that vStore made. We conclude the section by providing a discussion about our
findings.

5.1 Experimental Setup

We deployed a total of six storage nodes in the area of Darmstadt, Germany.
The maps shown in Figure 9 visualize our deployment. Figure 9(a) shows an
overview of the area with the location of the storage nodes and Figure 9(b)
zooms in on the city center with a heatmap depicting where most of the data
was captured. For a quick deployment, we use Raspberry Pis running mongoDB
as data storage. A NodeJS server implements the storage service and acts as
an interface between the data storage and the vStore framework. To simulate
different types of storage nodes we would have in a large-scale deployment, we
set different node types in our system: two cloudlets, one gateway, one cloud
node, one core net node and one private cloud.

We defined several global rules that were pushed to the phones in our field
trial of vStore. They are described in Table 1. The POI Photo Rule will be
executed when the user is detected to be close to a point of interest and takes a
photo. It matches any file size, day and time, and only applies to photos the user
wants to share. With the configured context, a detail score of 25% is reached.
The decision is divided into two layers. The first layer tries to save the file on a
gateway if one is available within 5km from the POI. If none is available, it tries
to find a cloudlet in a radius of 20km. The Social Photo Rule will be executed
in places that we consider to be social according to our places context. Here,
the same conditions apply as for the POI Photo Rule. We define two rules to
be able to evaluate them separately, according to the different place context.
The Driving Rule takes into account the activity context, as reported by the
context aggregator. If the user’s current activity is driving, it does not mean
that he is driving the car himself. This rule would also apply in trains or taxis.
Any file uploaded in this context will not be stored on nearby cloudlets since he
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(a) Overview (b) City center

Fig. 9: Node locations and usage heatmaps

might only drive by a nearby POI without the intention of sharing or retrieving
related data. The Event Photo Rule applies in the context of a place that is of
the type event and a noise level of at least 20dB. We determined the value for
this empirically by evaluating the behavior of the AWARE Noise plugin, even
though this value seems highly inaccurate. If this context is given, the rule will
store shared photos on a cloudlet within a radius of 30km. The Basic Cloud
Rule will be used as a fallback due to the low detail score, should no other rule
yield a result. It then checks if a core net node with a bandwidth of 10GBit/s is
available to upload the data. If this is not the case, the file will be stored in the
cloud. Finally, to also evaluate the storage of private files, we created a Basic
Private Rule. This rule matches everything the user wants to store for private
use.

We distributed the demo application to six participants and configured the
framework with the aforementioned rules. The participants were asked to use
the application to capture various kinds of data (e.g. photos, videos, contacts)
and store them using the demo application described in Section 4.4. The map in
Figure 9 shows on a heatmap where users were most active.

5.2 Usage Patterns and Storage Decisions

We now look at how users used their devices, i.e., which types of data they
stored and which storage decisions were made based on the rules we defined.
The bottom row of Table 1 shows how many times each rule was triggered. We
can observe that the Basic Cloud Rule was triggered the most, however, data
was stored on cloud nodes only for 29.3% of all data. This is because the cloud
rule has a very low detail score. In many cases, other rules that relate to the
user’s location or define a proximity to a point of interest, have a more detailed
score and therefore those are the ones that determine the placement. We can
think of the cloud rule as a fallback, in case there is no most likely place (e.g.,
when we are not sure where the user is).
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POI Photo
Rule

Social Photo
Rule

Driving Rule
Event Photo

Rule
Basic Cloud

Rule
Basic Private

Rule

Context Place: POI Place: Social
Activity:
Driving

Place: Event,
Noise: > -20dB

None None

File Size Any Any Any Any Any Any

File Types
JPG, BMP,
PNG, GIF

JPG, BMP,
PNG, GIF

Any
JPG, BMP,
PNG, GIF

Any Any

Sharing Domain Public Public Public Public Public Private

Weekdays Mon-Sun Mon-Sun Mon-Sun Mon-Sun Mon-Sun Mon-Sun

Time Any Any Any Any Any Any

Decision Layers

Layer 1
Gateway ≤

5km
Layer 2

Cloudlet ≤
10km

Layer 1
Cloudlet ≤

5km
Layer 2

Cloudlet ≤
10km

Layer 1
Cloud

Layer 1
Cloudlet ≤

30km

Layer 1
CoreNet with
↑ 10GBit/s,
↓ 10GBit/s
Layer 2
Cloud

Layer 1
Private Node

Detail Score 25 % 25 % 20 % 35 % 10 % 10 %

Times executed 36 34 18 5 47 5

Table 1: Placement rules

The resulting placement decisions for the different file types that were used
during our study are shown in Table 2. In total, users stored 178 files using
vStore, most of which were photos. Out of those, 35.9% were stored on cloudlets,
19.3% on gateway nodes and 2.7% on core net nodes. These numbers confirm
the benefits that can be obtained in future edge computing environments. In
contrast to this, without vStore, users would likely have all their photos uploaded
to distant cloud infrastructures. The table furthermore depicts the sharing ratio
for each type of data, i.e., whether users marked the data to be publicly shared
on the storage nodes or for their private use. From the results, we can observe
that this heavily depends on the data type. While users were willing to share
over 80 percent of their images, for more sensitive information such as contacts
this number drops down close to 3 percent. With the set of rules we defined,
we are able to capture the user’s intention, as the sharing domain influences the
placement decision vStore makes.

Node Type

Gateway
Cloudlet

1
Cloudlet

2
CoreNet Cloud

Private
Node

Phone Total
Sharing
Ratio

Images 28 35 17 4 43 4 14 145 81.46%

Videos 3 6 1 1 3 0 3 17 9.55 %

Documents 0 1 0 2 7 1 0 11 6.18 %

Contacts 2 0 0 0 3 0 0 5 2.81 %

Table 2: Placement results

5.3 Discussion

With our preliminary experiments outlined in this section, we were able to show
how we can make context-aware storage decisions that include heterogeneous
storage nodes by using rule-based matching. However, the accuracy of contextual
descriptions remains an issue. For instance, files were sometimes saved using a
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wrong context, due to the fact that the context is not updated in real time.
Keeping an accurate context on a mobile phone is always a trade-off between
accuracy and energy consumption. In addition, much work still needs to be done
in order to correctly recognize higher-level context. However, our user study
motivated the use cases of using cloudlets, especially if they are located at the
edge of the network and close-by to mobile users. This is especially true in the
context of sharing data locally. For this use case, vStore offers the possibility
to define rules that are triggered when a user is at a certain location or point
of interest. As outlined in Section 3.1, many people today share data at events,
some of them even with people present at the same event. For the future, we
envision storage cloudlets to be deployed throughout city areas, some of which
are co-located at the radio access network or act as gateway nodes themselves
(e.g., WiFi hotspots during events).

Of course, appropriate rules are required to make the framework beneficial
in practical use. We enable users to define custom rules that they can represent
their usage intentions with. In addition to custom rules, the framework allows
for global rules to be configured. In our field trial, we could see that even with
just a basic set of global rules, these were often executed when making the
placement decisions. In future use of the system, infrastructure providers could
set these global rules, e.g., to specify local cloudlets on gateway nodes when
regular networks are overloaded.

6 Conclusion and Future Work

In this paper, we presented vStore (virtual store), a framework that enables
micro-storage at the edge of the network and abstracts from predefined stor-
age locations for data captured by mobile users. This enables (i) decoupling of
storage locations from specific cloud infrastructures and therefore facilitates the
exchange of data across applications and (ii) leveraging small-scale cloudlets at
the edge of the network to provide better quality of service to mobile users. An
example use case for the latter is the sharing of data when cellular networks
are congested, e.g., during large-scale events. vStore allows different stakehold-
ers (e.g., mobile users or infrastructure providers) to define custom rules that
are evaluated when making the decision where to store the data. We showed the
viability of our system with a user study using a demo application that users
could use to capture and upload data. Furthermore, users were able to retrieve
related data related to their current usage context. We deployed different storage
nodes in a major city and through the implementation of example decision rules
we were able to show how this framework can complement existing cloud-based
storage infrastructures.

vStore provides an extensible framework we encourage other researchers to
use in order to test new approaches to decide storage locations. The rule frame-
work allows for custom definition and evaluation of decision algorithms. We
especially envision the emerging research on machine learning to be able to



vStore 17

contribute interesting insights on this. In future work, we will investigate opti-
mizations on the network layer as well as suitable replication mechanisms that
are required for a larger-scale deployment of our system. Furthermore, we plan
to include mechanisms to include the dynamic discovery of storage nodes into
the framework.
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