
VirtualStack: Green High Performance Network
Protocol Processing Leveraging FPGAs

Jens Heuschkel
TK / TU Darmstadt

heuschkel@tk.tu-darmstadt.de

Philipp Thomasberger
TK / TU Darmstadt

thomasberger@tk.tu-darmstadt.de

Julien Gedeon
TK / TU Darmstadt

gedeon@tk.tu-darmstadt.de

Max Mühlhäuser
TK / TU Darmstadt

max@tk.tu-darmstadt.de

Abstract—In times of cloud services and IoT, network protocol
processing is a big part of the CPU utilization today. Foong
et al. proposed the rule of thumb for TCP, that a single-core
CPU needs about 1 Hz clock frequency to produce 1 bit/s worth
of TCP data packets. Unfortunately, CPU speed has stagnated
around 5 GHz in recent years resulting in a upper limit of
5 GBit/s throughput with single-threaded network processing.
Further, CPUs featuring such high clock rates (e.g., Intel Core
i7-8086K) have rated TDP around 95 W, resulting in very high
power consumption for high throughput situations. Meanwhile,
industry offers some hardware acceleration for TCP as part of
their server network cards, to relief the server CPUs and increase
the energy efficiency. However this is just a small support as state
and management still needs the CPU of the host system.

In this paper, we present an approach based on field pro-
grammable gate arrays (FPGA) to not only free up CPU cycles
but provide a scaleable and energy efficient concept to fully utilize
high-speed network interfaces, while maintaining the flexibility of
software solutions. For our evaluation, we utilized the NetFPGA
Sume, proofing to achieve the linerate of connected SFP+ ports
while power consumption stays below 6 W. By leveraging network
protocol virtualization, the hardware acceleration approach is
not only deployable but stays flexible enough to adapt new
networking paradigms quickly.

Index Terms—protocol virtualization, FPGA acceleration, en-
ergy efficiency.

I. INTRODUCTION

Hardware acceleration was always the solution to overcome
the drawbacks of software solutions. As a result, we have today
specialized hardware modules for many tasks, starting with
floating point operations, memory management, or encryption
units in CPUs, going to graphics rendering co-processors such
as GPGPUs on separate cards. Specialized hardware always
fulfills its task way better than software solutions, with the
drawback of only fulfilling the one specialized task. Hence
the discussion of hardware acceleration is always based on the
necessity of high performance or low energy consumption for
the desired task against the additional hardware cost and the
additional consumed physical space of the additional chip.

In recent years, network speed has increased more rapidly as
CPU clock speed. In fact, the CPU clock speed has stagnated
around 5Ghz1 and CPU hardware development moved to
increase CPU core count to achieve higher system performance.
If we follow the rule of thumb by Foong et al. [3], the upper
boundary for single network connections is 5 Gbit/s, since

1https://software.intel.com/en-us/blogs/2014/02/19/
why-has-cpu-frequency-ceased-to-grow (accessed 11.01.19)

current network protocol processing architecture enforce single-
threaded processing. A further consequence of this rule is the
100 % utilization of one CPU core for network packet process-
ing, that is not available for application processing at this time.
As a result of the high utilization, the CPU has a high power
consumption near its TDP. Hence, we argue that we reached
a point where it is worth to consider hardware acceleration
for high-performance networking scenarios for three reasons:
i) Free CPU cycles for (server) applications instead of utilizing
them for network protocol processing. ii) Significantly higher
energy efficiency as CPU based network protocol processing.
iii) Easy scaling for high network throughput.

Even though hardware acceleration sounds promising to
tackle future network speeds, it will contribute to the ossi-
fication problem if implemented like current TCP offload-
ing engines [3]. Since hardware implementations (especially
ASICs) are static, it would take even more time to adopt
new networking paradigms than in software. Therefore, the
hardware acceleration has to implement the concept of network
protocol virtualization [6], to retain the flexibility of adapting
new network paradigms. To provide certain flexibility within the
hardware part, an FPGA is the means of choice. Since an FPGA
can be programmed by domain-specific hardware description
languages (e.g., VHDL), updates with novel networking
concepts are possible even at runtime.

Although the performance gain and the energy savings make
up for the additional hardware cost at least in professional
environments, the additional space consumption may be an
issue in high dense server farms. As Intel recently bought
Altera2 (2nd biggest FPGA company), we assume to see
FPGA and CPU combinations on one chip soon. These
combined processors would significantly decrease cost and
space consumption. Optimally, they would access the same
memory space, resulting in seamless hardware acceleration as
we know it from APU processors [2], [5].

Therefore we answer the following three research questions:
1) Where is the sweet spot between hardware and software?

Although it is possible to implement every task in
hardware, it may not be the best solution when it consumes
too much FPGA resources or issues communication
overhead between the FPGA and the host system. We

2https://newsroom.intel.com/news-releases/
intel-completes-acquisition-of-altera/\#gs.UvoygCpG (accessed 11.01.19)

investigate the consequences of porting the concept of
network protocol virtualization and discuss the dimensions
of resource consumption.

2) What is the acceleration potential of the FPGA based
network protocol virtualization system? We provide a
prototype implementation of our hardware concept to
evaluate the respective performance potential.

3) What is the energy saving potential while maintaining
maximal network performance? We investigate the en-
ergy consumption of our prototype implementation to
discuss the dimensions between CPU and FPGA power
consumption.

The remainder of the paper is structured as follows: Section II
presents the related work and the background of the network
protocol virtualization concept VirtualStack. In Section III
we present the FPGA architecture. Afterwards, Section IV
presents and discusses our evaluation results. Before Section VI
concludes the paper, we discuss limitations of hardware
implementations in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we give an overview of necessary background
information along with the related work to this topic.

In our previous work, we presented VirtualStack (VS) [6]. VS
represents our baseline architecture for the concept of network
protocol virtualization. The basic idea is to use a shim layer
between applications and network protocol stacks, to allow
application-independent network protocol stack management.
Therefore, VS provides modules to interface to (existing)
applications, manage network stack composition, defines a
protocol processing pipeline, and offers a management interface
to enable management through software-defined networking
concepts. The architecture also offers the possibility of applica-
tion layer middleboxes (ALM), which can be utilized to enrich
the network flow with additional services. In this paper, we
leverage our experience with the software implementation and
transfer it into hardware. The main focus is on the processing
pipeline and processing related management tasks, as we think
these parts are essential for the majority of use-cases.

In the field of FPGA-based acceleration, researcher and
industry typically implement bare protocols or Frameworks
for protocol building. Sidler et al. [10] presented a TCP/IP
implementation for the Xilinx VC709 platform. Their design
implements all functions of TCP and is able to saturate the
10 Gbit/s linerate of their test platform. In contrast to other
implementations, they optimized their core for a high number of
session counts which is prominent for common use-cases such
as web servers. Another example in this category is the work
of Anwer et al. [1]. They present SwitchBlade, a platform for
rapidly deploying custom protocols on programmable hardware.
Naturally, Switchblade’s design uses a processing pipeline and
uses individual hardware modules. In their evaluation, they
leveraged Switchblade to implement basic network protocols
such as IPv4, and an OpenFlow switch.

Also other services such as network function virtualization
(NFV) were explored in combination with FPGA acceleration.

Stage 2
Stage 1

Stack Module1

Fpga architecture

PCI-e Interface

Data Bus

PHY

…

Scheduler

FIFO Buffer

Width Converter

ALMFlo
w

 Tab
le

Stack M
o

d
u

le
2

Stack M
o

d
u

le
nSTA

C
K

Parser

Fig. 1: Hardware architecture for FPGA-based acceleration.

Kachris et al. [7] states that NFV is mainly understood as
the movement of network services from specialized hardware
products towards commodity off-the-shelf hardware. They
propose FPGAs as the best trade-off of both worlds, since
FPGAs execute real hardware modules, and thus, deliver
reliable performance with low energy consumption. Since
FPGAs are re-configurable, they can be used for different
services instead of fixed services as it is the case for specialized
hardware products. Nobach et al. [8] identifies the cost of
FPGAs as problem for NFV. As FPGAs are more expensive
as standard commodity of the shelf processors, they propose
dynamic provisioning as a solution. Their evaluation state a
cost reduction of 39%. Both concepts leverage the dynamic
reconfiguration of the FPGAs to increase cost efficiency, as
we do with our stack modules.

However, direct protocol or service implementations require
a modification of the corresponding software of the host
system. As it is doubtful that the enormous amount of running
software becomes re-implement to match the new interfaces,
the solutions are not deployable in the current Internet. With
our strategy of leveraging network protocol virtualization, an
application modification is not required, and thus, the solution
is deployable.

III. FPGA DESIGN

As discussed above, we try to include as many VirtualStack
related management tasks as possible into the FPGA design, to
reduce CPU usage. We decided to include all critical processing
path components for network protocol processing together
with the network protocol related management (e.g., packet
re-sending). Together with the application interfacing software,
the network flow management remains in the software part of
the concept.

Figure 1 illustrates the hardware architecture. The archi-
tecture is optimized to achieve the linerate of the physical
network ports, but at the same time, it must offer the flexibility
of network protocol virtualization. We also make sure that the
architecture is easily scalable for higher line rates in the future.

TABLE I: Available Memory Types.

Size on Testsystem
Mbit

Access Delay
CLK

DRAM 10.89 1
BRAM 52.92 1
SRAM 216 2.5
DDR RAM 64000 28-190

Therefore, the processing is split into two stages. The first stage
processes incoming data and management packets from the
software. The data stream arrives in the hardware via the PCI
Express interface (top of the figure). As flow management takes
place on the software side, the arriving data stream contains the
payload tagged with a flow id and control messages. The parser
module separates payload from management data and passes
management information to the scheduler. The scheduler stores
management information such as the scheduling scheme and
assigned network stack modules in a local look-up-table. For
each data packet, the scheduler decides which stack module
receives the data. Every stack module contains a FIFO buffer
to store a scheduled packet. After this FIFO buffer, the second
stage begins. The remainder of the stack module that is part
of the second stage is treated as a black box that processes
the payload into packets according to its protocol composition.
Depending on the module implementation, the stack module
can contain a private pipeline with additional stages, as the
stack module must be able to achieve the clock rate of the
second stage. To fulfill the packet processing, the network
stack modules manage the addressing information required for
the respective protocols for every assigned flow-id in a local
look-up-table. When the packet processing is finished, the stack
modules set the ready-to-send signal to indicate a sending wish
to the scheduler. The scheduler decides in round-robin order
which stack module is allowed to use the corresponding PHY
module at a given time, whereby a PHY module represents a
physical network connection.

Network stack modules are uniquely assigned to a PHY
module, that is connected to a physical network port. Due to
this design decision, a network stack module has to reach only
the linerate of a single physical network port, which reduces
the design complexity and clock rate, and thus, the energy
consumption. Also this couples the second stage – and thus
the processing part of the stack module – to the bus width and
the clock rate of the corresponding PHY module. On the other
hand, for every physical network port, a separate stack module
is required, even if network stacks are identical.

The described design leads to flexible scalability for virtually
arbitrary high throughput by maintaining a static latency
behavior. The first stage must be configured to provide enough
data to saturate the available physical network ports (in our case

TABLE II: Xilinx Virtex-7 XC7V690T Hardware Specification

Resource Available Used
Flip-Flop 866400 189841 (21.9%)
Look-Up-Table 693120 157504 (22.7%)
BRAM (kbit) 52920 42336 (80.0%)

SFP+ modules). Two ways are possible to increase throughput:
First, by increasing the bus width to transport more data within
one clock cycle. Second, by increasing clock rate to transport
data more often in a given time frame. The bus width is limited
by the available routing lines of the underlying FPGA hardware.
The clock rate is limited by the critical path of the scheduler
logic and parser logic and manufacturing properties of the
underlying FPGA hardware. The second stage is dominated by
the available PHY modules, which themselves are dependent
on the physical connection. Hence, the connection bus of the
second stage has the bus width of the PHY module and uses
the same clock rate. The resulting configuration will be able
to saturate the underlying physical link in a properly designed
network board.

Since the whole design is realized in specialized hardware
and does not use a general-purpose processing module to fulfill
protocols processing, the number of stack modules are limited
too. The possible number of different stack modules heavily
depends on the implemented protocol stack, and the used FPGA
model. Limiting factors are the available logic cells and memory.
Most FPGA products feature internal fast BRAM (accessible
within one clock) and distributed random-access memory build
from logic cells. Additionally, it is possible to attach external
memory modules, such as SRAM (accessible within 2-3 clocks)
or DRAM (accessible within 28-190 clocks) but due to the
slower access times, sustainable throughput at linerate is hard
to achieve. Hence, we only use BRAM within the critical
processing path and use external memory for side tasks, such as
packet resending. Table I summarizes the described properties.
To partially overcome the problem of limited stack modules,
the architecture is designed to support partial reconfiguration3.
This allows changing parts of the FPGA configuration without
interrupting the operation of remaining modules. Hence an
inactive stack module can get reconfigured at runtime, to
support other network stack compositions.

IV. EVALUATION

To evaluate our concept, we implemented the described
architecture. As hardware platform we used the NetFPGA
SUME4, which is a specialized FPGA developer board for
network purposes. From the rich feature-set of the board we
utilize the Xilinx Virtex-7 XC7V690T (see Table II), the four
SFP+ interfaces (10Gbps each), and the connected SRAM
(3x72Mbit). Since we needed a synchronized clock for our
experiments, we decided to use the same NetFPGA board for
sending and receiving concurrently. Hence, we utilized two of
the four SFP+ ports as sender ports and the remaining two
SFP+ ports as receiver ports. The ports are directly connected
through optical fiber cables. To generate payload we flash
a packet generator onto the FPGA. Figure 2 illustrates the
experiment setup for one SFP+ channel. Table II shows the

3Partial Reconfiguration is a feature that allows flashing partial bitstreams
of an FPGA design. https://www.xilinx.com/products/designtools/vivado/
implementation/partial-reconfiguration.html, (accessed 11.01.19).

4https://netfpga.org/site/#/systems/1netfpga-sume/details (accessed 11.01.19)

Packet Generator

Data Bus

PHY

Scheduler
Parser

Passth
ro

u
gh

Stack M
o

d
u

le

U
D

P/IP
Stack M

o
d

u
le

U
D

P/IP
Stack M

o
d

u
le

Clock Packet Counter

PHY

Passth
ro

u
gh

Stack M
o

d
u

le

U
D

P/IP
Stack M

o
d

u
le

U
D

P
+

+/IP
Stack M

o
d

u
le

Fig. 2: Illustration of experiment setup for the evaluation.

consumed hardware resources for the experiment setup with
stack specific flow tables for up to 216 flows5.

In the following, we will present the evaluation in two
parts: First, we show the network performance evaluation
to prove the feasibility of sufficient network performance
with the presented concept. Second, we present an energy
consumption discussion to demonstrate the superiority of the
presented discrete hardware concept over CPU based solutions
for network protocol processing.

A. Network Performance

To evaluate network processing performance of our prototype
implementation, we investigate the protocol processing latency,
jitter, network throughput in a logic level simulation. To
confirm the simulation results, we measuread processing latency,
application layer latency, and throughput using the NetFPGA
with the experiment setup illustrated in Figure 2.

Figure 3(a) shows the processing latency for one network
packet of a mouse flow (8 bytes payload) in clock cycles. As
we used a clock rate of 156.25 MHz, a clock cycle equals to:

tlatency = ncycles ∗
1

fclk
= ncycles ∗ 6, 4 ∗ 10−9

The prototype implementation handles 128 bit (16 bytes) per
clock cycle in stage one. For every incoming network packet,
the first processing stage is identical. In our implementation this
takes six clock cycles (38.4 ns); two for parsing the packet, three
for traversing the FIFO buffer, and one to convert the bus width
to the second stage. Afterward, the payload gets processed
according to the respective protocol stack. We measured three
stack modules to provide an overview for overall processing
latency: First, we measured a passthrough (P/T) stack for
preprocessed payload, that only adds the Ethernet frame. This
corresponds to the behavior of standard network cards. The
processing path adds up to 13 clock cycles (82.3 ns). Second,
we measured a UDP stack, processing the payload to sendable
UDP/IPv4 packets including the Ethernet frame. A packet was
processed within 20 clock cycles (128 ns). Lastly we added an
ALM to the UDP stack to provide NACK based reliability, FEC,
and in-order-delivery. This feature-set was formerly presented

5Business routers such as the Cisco RV3401W allow up to
40000 concurrent session. https://www.cisco.com/c/en/us/products/collateral/
routers/small-business-rv-seriesrouters/datasheet-c78-739257.html, (accessed
27.12.18). 16 bit addresses are needed to fit these number of flows.

as UDP++ in [6], [4]. The additional layer took three additional
clock cycles, and thus, a UDP++ packet was processed within
23 clock cycles (147.7 ns).

The same measurements are shown in Figure 3(b) for an
elephant flow with a payload size of 1456 bytes. Due to the
bigger packet size, the packet needs more time to get buffered
into the FIFO buffer. Together with the parser and the width
converter, this results in 95 clock cycles in the first stage. The
passthrough stack has a task independent from the packet size,
and thus, needs the same amount of cycles as for the mouse
flow. This results in 102 clock cycles (652.8 ns). As the UDP
header contains the length of the packet as well as a checksum,
the whole packet needs to be buffered in order to obtain the
required information for the header. The UDP module takes
192 clock cycles to process the packet because the bus width
is only 64 bit inside the module. Together with the stage one
processing, a UDP packet takes 294 clock cycles (1881.6 ns) to
be processed. The UDP++ ALM operates independently from
packet size and adds the same three clock cycles as for the
mouse flow. Therefore, a UDP++ packet is processed within
297 clock cycles (1900.8 ns).

To confirm the results from the logic level simulation we
carried out a real-world measurement. We performed the same
experiment described above but flashed it on the NETFPGA
SUME. To measure the processing latency, we added a module
to count the clocks for every processing step. Fortunately, the
results line up with the logic level simulation as shown in
Figure 3(c) and Figure 3(d). As the jitter introduced by the
SFP+ module is in the picosecond region, we were not able
to measure any variances in the physical propagation delay.

From the perspective of raw network packet transmission,
jitter does not occur within the processing pipeline. However,
many network protocols produce management packets such as
ACK, NACK, or FEC packets. The stack module must send the
management packets in between the data packets. This results
in a small application layer jitter since the payload processing
is postponed until management packets are processed.

The architecture is designed to saturate the linerate of the
existing SFP+ ports. As we explained above the stage one
bus needs to fit the capacity of all physical network interfaces.
Therefore we set the bus width to 128 bit and used the same
clock rate as for stage two. Hence the bus is able to transmit
enough data for two saturated network connections as we
needed it for our experiments setup. The stage two bus is
defined by the hardware connections to 64 bit and 156.25 MHz.
Hence the raw throughput always reaches the full linerate of
10 Gbit/s per port. The application layer payload throughput
(goodput) depends on the used protocol and the used packet
size, comparable to software implementations. In contrast to
software solutions, the performance is not limited by an upper
packet per second boundary, but with the upper limit of raw
throughput, the buses are capable to handle.

To conclude the network performance discussion, we state
that the performance of the prototype implementation is
outstanding in all disciplines. The measured overhead is not
only negligible in networking dimensions but also several

P/T UDP UDP++0

5

10

15

20

Cl
oc

k
cy

cle
s

(a) Mouse Flow (SIM)

P/T UDP UDP++0

50

100

150

200

(b) Elephant Flow (SIM)

P/T UDP UDP++0

20

40

60

80

Cl
oc

k
cy

cle
s

(c) Mouse Flow (HW)

P/T UDP UDP++0

50

100

150

200

250 Parser
FIFO
Bus Conv.
MAC
UDP++
UDP/IPv4
Fiber Con.

(d) Elephant Flow (HW)

Fig. 3: Processing latency for a mouse flow and a elephant flow in logic level simulation and hardware testbed. X-axis indicating
used protocol stack whereby P/T stands for the passthrough stack.

orders of magnitude faster than the CPU-based results in
our previous work, and thus, will not affect application layer
network performance. As the implementation of a TCP stack
module would not provide additional scientific insights for our
concept, we left it for future work. However, Sidler et al. [10]
investigated their TCP hardware implementation and found
comparable evaluation results to ours using the UDP++ stack.

B. Energy Consumption

In this section, we discuss the power consumption of the
prototype implementation of the presented design. Table III
shows the power consumption of the individual modules
calculated by the Xilinx Vivado Power Report. Besides our
modules, the power report contains the PCI-Express modules
that are necessary to drive our design from a host system and
the PCSPMA modules which represent the connection to the
SFP+ ports. All shown values are dynamic values, which means
that this power is needed while changing its state, and thus, is
proportional to the clock rate and can be avoided by setting the
clock to 0 Hz. The static consumption of the design is 0.562
W and is continuously consumed. Because most of the power
draw is dynamic, the power consumption could further be
reduced using clock gating. With this technique, modules that
are not actively processing get cut off from the clock source,
eliminating the dynamic power draw of a module during its
inactive time.

TABLE III: Dynamic Power Consumption of the Individual
Modules (Vivado Power Report)

Module Power Consumption
Xilinx PCIE 2.674 W
PCIE DMA Engine 0.851 W
PCSPMA 0.428 W
UDP Stack 0.227 W
UDP++ Stack 0.228 W
Scheduler 0.080 W
Packet Generator 0.003 W
Parser 0.002 W
Databus 0.002 W

For a typical server network interface card with two SFP+
ports, only the network protocol stacks need to be doubled,
and the bus size needs to be increased. Together with the static
power consumption, the total power consumption of ≈ 6 W
is added up in Table IV. If we were utilizing all four SFP+
ports, the power consumption results in ≈ 7.7 W. To reduce the
standby power draw, some parts of the card can be deactivated
through clock gating. This includes the scheduler, the network
protocol stacks, and the SFP+ slots. The parser and the PCIE
interface need to stay active to wake up the card if needed.
Together with the static power draw, this would result in a
standby power consumption of ≈ 4 W.

Similar to the results of our network performance measure-
ments, the energy consumption results are convincing. If we
compare the energy consumption to the example CPU from
the abstract (Intel Core i7-8086K – 95 W TDP – 4 of 6 cores
used for 20 Gbit/s) with the proposed rule of thumb, the FPGA
design consumes around 10% of the energy the CPU would
need for the same processing.

V. HARDWARE LIMITATIONS

In principle, it is possible to implement the complete Virtual-
Stack concept as hardware design. However dynamic concepts
like the SDN interface and rule execution would consume many
FPGA resources even though they are not performance critical.
Due to cost reasons, only an implementation of the critical
path with direct dependent management is desirable. As we
figured for our design, the available fast memory is the most
limiting factor for network packet processing. Especially for
reliability mechanisms where packet caching is important, the
performance of the implementations heavily depends on free
SRAM space, since the only alternative is DRAM, which is
several orders of magnitude slower.

As we discussed above, our design was built with scaling
in mind. We discussed the extension of the clock rates and
the bus width as scaling factors. However, these factors also
have hardware related limitations. The presented design can
run with a frequency up to 383 MHz on our test hardware.
A 64-bit bus can serve 20 Gbit/s network connections with a

TABLE IV: Power Consumption for our Example NIC

Module Power / Instance Instances
Xilinx PCIE 2.674 W 1
PCIE DMA Engine 0.851 W 1
PCSPMA 0.428 W 2
UDP Stack 0.227 W 2
UDP++ Stack 0.228 W 2
Scheduler 0.08 W 1
Parser 0.002 W 1
Databus 0.002 W 1
Static Power Draw 0.562 W
Sum 5.937 W

clock rate of 312.50 MHz. As this clock rate depends on the
compiler and synthesizer tools and the underlying hardware this
might be different for other FPGA products or future compilers.
The bus width, on the other hand, is much less limited. Used
building blocks provided by Xilinx provide bus interfaces up
to 4096 bit. Together with the 312.50 MHz clock rate, the
current design would be limited to 1.28 Tbit/s worth of network
traffic. However, it would be possible to use multiple building
blocks in parallel, but other factors like the multiplication of
the needed network protocol stacks would limit the design in
beforehand as the FPGA offers a limited number of logic cells.

Another limiting factor for internal throughput is the align-
ment of the data. The payload size is vital to maximize internal
throughput. In our prototype implementation, we work with a
128-bit Bus in the first stage and a 64-bit bus as connection to
the SFP+ ports. The packet payload is 1458 bytes to maximize
throughput of a UDP stack with an MTU of 1500 bytes.
However, to maximize the throughput through the internal
buses, the payload should be dividable into 128-bit chunks
without a remainder to saturate the bus communication. Since
the 1458 bytes payload is not dividable by 128 bit, every 92nd
packet contains only 16 bit, which is an underwhelming bus
utilization of 12.5% for this single clock(≈ 99.0% AVG). To
fix this issue, the payload size should be reduced to 1456 bytes
since it would saturate the stage one bus communication. The
same issue occurs in stage two: The UDP/IP protocol stack
adds the 42 bytes of header resulting in a 1498 bytes packet
which is not dividable by 64-bit, and thus, cannot saturate
the stage two bus to the SFP+ connection. However, the bus
utilization for this single clock is with 25% higher than in
stage one (≈ 99.6% AVG).

VI. CONCLUSION

In this paper we presented FPGA based hardware accelera-
tion for VirtualStack. We presented a comprehensive design
to accelerate the critical path processing including the whole
protocol stack and stack specific application layer middleboxes.
Further, we presented a prototype implementation to evaluate
the expectable performance and energy consumption.

The evaluation of the prototype implementation showed that
throughput always achieves line rate when bus alignment is
respected. Goodput, however, depends on the used protocol
stack and the packet size, as it is the case for software
implementations. The latency of critical path processing was
always < 2 µs. Considering that standard NICs typically

produce a delay of 10 µs without network protocol processing
[9], these values are not only negligible but spectacularly low.
The same holds for power consumption: An example two-port
network card was evaluated to consume less than 6 Watt when
processing network protocols at line rate. Considering that such
high throughput creates high CPU utilization (if achievable at
all), the power savings are remarkable.

To conclude this paper, we state that FPGA based hardware
acceleration is beneficial in professional server environments
since it not only reduces CPU utilization but increases perfor-
mance for a fraction of the energy cost. If we see cheaper FPGA
devices in future (e.g., integrated in CPUs) it will become
attractive for consumer devices too. Since the presented design
intentionally relies on FPGAs instead of ASICs, it provides the
needed flexibility to adopt new networking paradigms quickly.

ACKNOWLEDGMENT

This work has been funded by the German Research Foundation
(DFG) as part of the project B2 within the Collaborative Research
Center (CRC) 1053 – MAKI.

REFERENCES

[1] M. B. Anwer, M. Motiwala, M. b. Tariq, and N. Feamster. Switchblade:
a platform for rapid deployment of network protocols on programmable
hardware. ACM SIGCOMM Computer Communication Review, 41(4):183–
194, 2011.

[2] A. Branover, D. Foley, and M. Steinman. Amd fusion apu: Llano. Ieee
Micro, 32(2):28–37, 2012.

[3] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J. Regnier.
Tcp performance re-visited. In Performance Analysis of Systems and
Software, 2003. ISPASS. 2003 IEEE International Symposium on, pages
70–79. IEEE, 2003.

[4] J. Heuschkel, E. Fleckstein, M. Ofenloch, and M. Mühlhäuser. Udp++:
Cross-layer optimizable transport protocol for managed wireless networks.
In 2019 IEEE Global Communications Conference: Mobile and Wireless
Networks (Globecom2019 MWN), pages 1–6, Waikoloa, USA, Dezember
2019.

[5] J. Heuschkel, R. Vogel, M. Blcher, and M. Mühlhäuser. Blow up the
cpu chains! opencl-assisted network protocols. In Proceedings of Local
Computer Networks (LCN), 2018 IEEE 43nd Conference on, pages
657–665, 2018.

[6] J. Heuschkel, L. Wang, E. Fleckstein, M. Ofenloch, M. Blöcher,
J. Crowcroft, and M. Mühlhäuser. Virtualstack: Flexible cross-layer
optimization via network protocol virtualization. In 2018 IEEE 43rd
Conference on Local Computer Networks (LCN), pages 519–526. IEEE,
2018.

[7] C. Kachris, G. Sirakoulis, and D. Soudris. Network function virtualization
based on fpgas: A framework for all-programmable network devices.
arXiv preprint arXiv:1406.0309, 2014.

[8] L. Nobach, B. Rudolph, and D. Hausheer. Benefits of conditional fpga
provisioning for virtualized network functions. In 2017 International
Conference on Networked Systems (NetSys), pages 1–6. IEEE, 2017.

[9] P. Shivam, P. Wyckoff, and D. Panda. Emp: zero-copy os-bypass nic-
driven gigabit ethernet message passing. In SC’01: Proceedings of the
2001 ACM/IEEE Conference on Supercomputing, pages 49–49. IEEE,
2001.

[10] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Carley.
Scalable 10gbps tcp/ip stack architecture for reconfigurable hardware. In
2015 IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, pages 36–43. IEEE, 2015.

