
Urban Edge Computing

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

Dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

Eingereicht von:
Julien Alexander Gedeon

geboren am 4. August 1987 in Frankfurt am Main

Tag der Einreichung: 18.06.2020

Tag der Disputation: 30.07.2020

Erstreferent: Prof. Dr. Max Mühlhäuser

Korreferent: Prof. Dr. Christian Becker

Darmstadt 2020

Hochschulkennziffer D 17

Julien Alexander Gedeon: Urban Edge Computing
Darmstadt, Technische Universität Darmstadt

Jahr der Veröffentlichung der Dissertation auf TUprints: 2020
URN: urn:nbn:de:tuda-tuprints-13362
URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/13362
Tag der mündlichen Prüfung: 30.07.2020

Veröffentlicht unter CC BY-NC-ND 4.0 International.
https://creativecommons.org/licenses/by-nc-nd/4.0

Abstract

The new paradigm of Edge Computing aims to bring resources for storage and com-
putations closer to end devices, alleviating stress on core networks and enabling
low-latency mobile applications. While Cloud Computing carries out processing in
large centralized data centers, Edge Computing leverages smaller-scale resources—
often termed cloudlets—in the vicinity of users. Edge Computing is expected to sup-
port novel applications (e.g., mobile augmented reality) and the growing number of
connected devices (e.g., from the domain of the Internet of Things). Today, however,
we lack essential building blocks for the widespread public availability of Edge Com-
puting, especially in urban environments. This thesis makes several contributions
to the understanding, planning, deployment, and operation of Urban Edge Comput-
ing infrastructures. We start from a broad perspective by conducting a thorough
analysis of the field of Edge Computing, systematizing use cases, discussing poten-
tial benefits, and analyzing the potential of Edge Computing for different types of
applications.

We propose re-using existing physical infrastructures (cellular base stations,
WiFi routers, and augmented street lamps) in an urban environment to provide
computing resources by upgrading those infrastructures with cloudlets. On the
basis of a real-world dataset containing the location of those infrastructures and
mobility traces of two mobile applications, we conduct the first large-scale mea-
surement study of urban cloudlet coverage with four different metrics for coverage.
After having shown the viability of using those existing infrastructures in an urban
environment, we make an algorithmic contribution to the problem of which loca-
tions to upgrade with cloudlets, given the heterogeneous nature (with regards to
communication range, computing resources, and costs) of the underlying infrastruc-
ture. Our proposed solution operates locally on grid cells and is able to adapt to the
desired tradeoff between the quality of service and costs for the deployment. Using
a simulation experiment on the same mobility traces, we show the effectiveness of
our strategy.

Existing mechanisms for computation offloading typically achieve loose cou-
pling between the client device and the computing resources by requiring prior
transfers of heavyweight execution environments. In light of this deficiency, we
propose the concept of store-based microservice onloading, embedded in a flexi-
ble runtime environment for Edge Computing. Our runtime environment oper-
ates on a microservice-level granularity and those services are made available in
a repository—the microservice store—and, upon request from a client, transferred
from the store to execution agents at the edge. Furthermore, our Edge Comput-
ing runtime is able to share running instances with multiple users and supports the
seamless definition and execution of service chains through distributed message
queues. Empirical measurements of the implemented approach showed up to 13
times reduction in the end-to-end latency and energy savings of up to 94 % for the
mobile device.

We provide three contributions regarding strategies and adaptations of an Edge
Computing system at runtime. Existing strategies for the placement of data and
computation components are not adapted to the requirements of a heterogeneous
(e.g., with regards to varying resources) edge environment. The placement of func-
tional parts of an application is a core component of runtime decisions. This prob-
lem is computationally hard and has been insufficiently explored for service chains

iii

whose topologies are typical for Edge Computing environments (e.g., with regards
to the location of data sources and sinks). To this end, we present two classes of
heuristics that make the problem more tractable. We implement representatives
for each class and show how they substantially reduce the time it takes to find a
solution to the placement problem, while introducing only a small optimality gap.
The placement of data (e.g., such captured by mobile devices) in Edge Computing
should take into account the user’s context and the possible intent of sharing this
data. Especially in the case of overloaded networks, e.g., during large-scale events,
edge infrastructure can be beneficial for data storage and local dissemination. To
address this challenge, we propose vStore, a middleware that—based on a set of
rules—decouples applications from pre-defined storage locations in the cloud. We
report on results from a field study with a demonstration application, showing that
we were able to reduce cloud storage in favor of proximate micro-storage at the
edge.

As a final contribution, we explore the adaptation possibilities of microservices
themselves. We suggest to make microservices adaptable in three dimensions: (i) in
the algorithms they use to perform a certain task, (ii) in their parameters, and (iii) in
auxiliary data that is required. These adaptations can be leveraged to trade a faster
execution time for a decreased quality of the computation (e.g., by producing more
inaccurate or partly wrong results). We argue that this is an important building
block to be included in an Edge Computing system in view of both constrained
resources and strict requirements on computation latencies. We conceptualize an
adaptable microservice execution framework and define the problem of choosing
the service variant, building upon the design of our previously introduced Edge
Computing runtime environment. For a case study, we implement representative
examples (e.g., in the field of computer vision and image processing) and outline
the practical influence of the abovementioned tradeoff.

In conclusion, this dissertation systematically analyzes the field of Urban Edge
Computing, thereby contributing to its general understanding. Our contributions
provide several important building blocks for the realization of a public Edge Com-
puting infrastructure in an urban environment.

iv

Zusammenfassung

Das neue Paradigma des Edge Computing zielt darauf ab, Ressourcen für Daten-
speicherung und Berechnungen näher an Endgeräte zu verlagern, um so die Be-
lastungen in den Kernnetzen zu verringern und geringe Latenzen für mobile An-
wendungen zu ermöglichen. Während bei Cloud Computing die Datenverarbeitung
in großen, zentralisierten Rechenzentren erfolgt, nutzt Edge Computing kleinere
opportunistische Ressourcen – oftmals als Cloudlets bezeichnet – in der Nähe der
Benutzer. Es wird davon ausgegangen, dass Edge Computing sowohl neuartige An-
wendungen (z.B. Mobile Augmented Reality) ermöglichen, als auch die wachsende
Anzahl von vernetzen Geräten (z.B. im Umfeld des Internet der Dinge) unterstützen
wird. Heute fehlen jedoch wesentliche Bausteine für eine breite, allgemeine Ver-
fügbarkeit von Edge Computing, insbesondere in urbanen Umgebungen. Die vor-
liegende Dissertation liefert mehrere Beiträge zum Verständnis, zur Planung, zur
Bereitstellung, sowie zum Betrieb von Urban-Edge-Computing-Infrastrukturen. Wir
nehmen zunächst eine breite Perspektive ein, indem wir das Forschungsfeld des Ed-
ge Computing eingrenzen, Anwendungsfälle systematisieren, die Vorteile von Edge
Computing diskutieren und dessen Potenzial für verschiedene Arten von Anwen-
dungen analysieren.

Wir schlagen vor, bestehende physische Infrastrukturen (Mobilfunk-Basisstatio-
nen, WiFi-Router und neuartige Straßenlaternen) in einer städtischen Umgebung
zur Bereitstellung von Rechenressourcen zu verwenden, indem diese Infrastruktu-
ren mit Cloudlets aufgerüstet werden. Auf Grundlage eines realen Datensatzes, der
die Standorte dieser Infrastrukturen und die Bewegungsdaten zweier mobiler An-
wendungen enthält, präsentieren wir erstmals eine groß angelegte Messstudie zur
städtischen Cloudlet-Abdeckung. Diese Analyse führen wir auf Grundlage von vier
verschiedenen Metriken für Abdeckung durch. Hierdurch zeigen wir die Machbar-
keit der Nutzung dieser bestehenden Infrastrukturen in einer städtischen Umge-
bung für die Bereitstellung von Rechenressourcen durch Cloudlets. Basierend auf
diesen Erkenntnissen leisten wir einen algorithmischen Beitrag zur Frage, welche
Standorte mit Cloudlets aufgerüstet werden sollten, unter der Annahme, dass die
zugrundeliegenden Infrastrukturen heterogen (in Bezug auf Kommunikationsreich-
weite, Ressourcen und Kosten) sind. Unser Ansatz operiert lokal auf Planquadraten
und ist in der Lage, sich an einen variierenden Tradeoff zwischen Dienstgüte und
Kosten anzupassen. Mittels eines Simulationsexperiments, das auf den gleichen vor-
her genannten Bewegungsdaten basiert, zeigen wir die Effektivität unseres Ansat-
zes.

Bestehende Ansätze für die Auslagerung von Berechnungen sind oft mit einem
hohen Aufwand verbunden, weil vor der Ausführung die Übertragung schwerge-
wichtiger Ausführungsumgebungen vom Endgerät erforderlich ist, um eine lose
Kopplung zwischen den Endgeräten und den Rechenressourcen zu erreichen. An-
gesichts dieses Mankos schlagen wir das Konzept des Microservice Store Onloading
vor und betten dieses in eine flexible Laufzeitumgebung für Edge Computing ein.
Diese Laufzeitumgebung nutzt feingranulare Module, sog. Microservices für die Aus-
führung von Berechnungen und hält diese Microservices in einem sog. Microservice
Store vor. Auf eine Anfrage von Benutzern hin werden die Microservices vom Sto-
re direkt auf Agenten am Rande des Netzwerkes übertragen und ausgeführt. Des
Weiteren ist die von uns vorgeschlagene Laufzeitumgebung in der Lage, laufende
Service-Instanzen zwischen verschiedenen Benutzern zu teilen und ermöglicht über

v

verteilte Nachrichtenwarteschlangen die Definition und Ausführung von verkette-
ten Microservices. Empirische Messungen des implementierten Ansatzes zeigten ei-
ne bis zu 13-mal geringere Ende-zu-Ende-Latenz sowie Energieeinsparungen von
bis zu 94 % für die mobilen Client-Geräte.

Wir liefern drei Beiträge zu Entscheidungsstrategien und Anpassungen einer
Edge Computing-Ausführungsumgebung zur Laufzeit. Bestehende Strategien zur
Platzierung von Daten und Berechnungskomponenten sind nicht an die Anfor-
derungen einer (z.B. in Bezug auf Ressourcen) heterogenen Edge-Computing-
Umgebung angepasst. Die Platzierung von funktionalen Teilen einer Anwendung
ist eine Kernentscheidung in Ausführungsumgebungen. Dieses Platzierungsproblem
ist rechenaufwändig und wurde für Service-Ketten, deren Topologien typisch für
Edge-Computing-Umgebungen sind (z.B. im Hinblick auf die Lage von Datenquel-
len und -Senken im Netzwerk), bisher nur unzureichend untersucht. Aufbauend
auf dieser Beobachtung stellen wir zwei Klassen von Heuristiken vor, die das Plat-
zierungsproblem in Edge Computing besser handhabbar machen. Für jede Klasse
von Heuristiken implementieren wir Repräsentanten und zeigen, dass unser Ansatz
die Zeit, die für die Lösung des Platzierungsproblems benötigt wird, erheblich redu-
ziert. Zudem weisen die so gefundenen Lösungen nur minimale Abweichungen zur
optimalen Platzierungsentscheidung auf. Die Platzierung von Daten in Edge Com-
puting (z.B. solcher, die über mobile Endgeräte erfasst werden) sollte idealerweise
den aktuellen Kontext des Benutzers sowie das Teilen der Daten berücksichtigen.
Insbesondere bei überlasteten Netzwerken, z.B. infolge von Großveranstaltungen,
können Edge-Computing-Infrastrukturen nützlich für die Speicherung und Ver-
teilung von Daten sein. Hierzu schlagen wir vStore vor, eine Middleware, die –
basierend auf einer Menge von Regeln – Anwendungen von ihren vordefinierten
Speicherorten in der Cloud entkoppelt. Wir analysieren die Ergebnisse einer Feld-
studie, durchgeführt mit einer Beispielanwendung, und zeigen auf, dass unser
Ansatz in der Lage ist, Speicherorte von der Cloud an den Rand des Netzes zu
verlagern.

Als abschließenden Beitrag untersuchen wir die Anpassungsmöglichkeiten der
Microservices selbst. Wir schlagen vor, die Microservices in dreierlei Hinsicht anzu-
passen: (i) in den Algorithmen, die sie zur Ausführung einer bestimmten Aufgabe
verwenden, (ii) in ihren Parametern und (iii) in ggf. für die Ausführung erforderli-
chen weiteren (Hilfs-)Daten. Diese Anpassungen können z.B. genutzt werden, um
eine schnellere Ausführungszeit im Gegenzug für eine verminderte Qualität der Be-
rechnung (z.B. durch ungenauere oder teilweise falsche Ergebnisse) zu erreichen.
Wir zeigen auf, dass diese Abwägung ein wichtiger Baustein in Edge-Computing-
Umgebungen ist, bedingt sowohl durch die typische Ressourcenknappheit auf der
einen, als auch im Hinblick auf strikte Latenzanforderungen auf der anderen Seite.
Wir konzipieren eine Laufzeitumgebung, die anpassbare Microservices unterstützt,
und definieren das Problem der Auswahl einer konkreten Dienstvariante, wobei wir
auf dem Design der zuvor vorgestellten Edge-Computing-Ausführungsumgebung
aufbauen. In einer Fallstudie demonstrieren wir anhand von repräsentativen Bei-
spielen (z.B. im Bereich von Computer Vision und Bildverarbeitung) den Prakti-
schen Einfluss der oben genannten Abwägungsentscheidung.

Zusammenfassend bietet diese Dissertation eine systematische Analyse des For-
schungsfeldes von Urban Edge Computing. Unsere Beiträge liefern wichtige Bau-
steine zur Realisierung einer allgemein verfügbaren Edge-Computing-Infrastruktur
im urbanen Raum.

vi

Acknowledgments

Completing this thesis would not have been possible without the continuous support
and encouragement of my supervisors, colleagues, family, and friends. Thank you
for having been by my side on this journey.

First of all, there is of course Max, who gave me the chance to pursue my
PhD in the Telecooperation group. Despite your busy schedule at times, I could
always count on your support when I needed it most. Thanks for all the inspiring
discussions—big and small—and your feedback over the past years. Thanks for cre-
ating a working environment where one is able to openly speak their mind. I did
not take this for granted. I am also thankful to Christian Becker for his comments
and his willingness to act as a co-referee for my thesis.

A big thanks goes to Immanuel Schweizer, who inspired me to do research and,
ultimately, recruited me. Working at TK has truly been a pleasure. Michael Stein
has been a great colleague in guiding me through the PhD jungle. I’ll always value
your advice! Big cheers to my other (former) office mates Florian Brandherm, Jens
Heuschkel, and Martin Wagner.

Thanks to the following people for having inspired my research and fostered
interesting discussions: Carlos Garcia, Alexander Seeliger, Tim Grube, Florian Volk,
Tim Neubacher, Sebastian Wagner, Katharina Keller, and Patrick Felka. Sorry to the
folks in A316 for my countless interruptions and rants. Speaking of A316, thanks
to Jörg Daubert and Rolf Egert for maintaining a healthy supply of refreshments
up there. A big thanks has to go to the people who keep TK running, sometimes
without being noticed and acknowledged enough: Elke Halla, Elke Reimund, Fabian
Herrlich, and Sebastian Alles.

Supervising and working with gifted students has been an amazing part of my
time at TK. Following the saying “If you are the smartest person in the room, you
probably are in the wrong room”, we learned from each other and realized amaz-
ing ideas! In this regard, special thanks go out to Disha Bhat, Ali Karpuzoglu, Jeff
Krisztinkovics, Nicolas Himmelmann, Karolis Skaisgiris, Alexandra Skogseide, Mar-
tin Wagner and Sebastian Zengerle.

Believe it or not, I managed to maintain a social life outside the PhD bubble.
Thanks to all of my friends for supporting me, listening to my annoying complaints,
and lifting me up again every time. A special thanks to Katharina Bina, Hanna
Barysevich, and Alice Pairault. You all are amazing! Last, but not least, a big thanks
goes out to my family.

vii

Author’s Publications

Large parts of the content of this dissertation have been published in journals or as
part of the proceedings of peer-reviewed international conferences and workshops.
In the following, we list all authored and co-authored publications of the author of
this dissertation.

Main Publications

[Ged+17] Julien Gedeon, Christian Meurisch, Disha Bhat, Michael Stein, Lin
Wang, and Max Mühlhäuser. “Router-based Brokering for Surrogate
Discovery in Edge Computing”. In: Proc. of the International Con-
ference on Distributed Computing Systems Workshops (ICDCS Work-
shops). 2017, pp. 145–150.

[Ged+18a] Julien Gedeon, Jens Heuschkel, Lin Wang, and Max Mühlhäuser. “Fog
Computing: Current Research and Future Challenges”. In: Proc. of
1.GI/ITG KuVS Fachgespräche Fog Computing. 2018, pp. 1–4.

[Ged+18b] Julien Gedeon, Nicolás Himmelmann, Patrick Felka, Fabian Her-
rlich, Michael Stein, and Max Mühlhäuser. “vStore: A Context-Aware
Framework for Mobile Micro-Storage at the Edge”. In: Proc. of the In-
ternational Conference on Mobile Computing, Applications and Services
(MobiCASE). 2018, pp. 165–182.

[Ged+18c] Julien Gedeon, Jeff Krisztinkovics, Christian Meurisch, Michael Stein,
Lin Wang, and Max Mühlhäuser. “A Multi-Cloudlet Infrastructure for
Future Smart Cities: An Empirical Study”. In: Proc. of the 1st Interna-
tional Workshop on Edge Systems, Analytics and Networking (EdgeSys).
ACM. 2018, pp. 19–24.

[Ged+18d] Julien Gedeon, Michael Stein, Jeff Krisztinkovics, Patrick Felka,
Katharina Keller, Christian Meurisch, Lin Wang, and Max Mühlhäuser.
“From Cell Towers to Smart Street Lamps: Placing Cloudlets on Ex-
isting Urban Infrastructures”. In: Proc. of the 2018 IEEE/ACM Sympo-
sium on Edge Computing (SEC). IEEE. 2018, pp. 187–202.

[Ged+18e] Julien Gedeon, Michael Stein, Lin Wang, and Max Mühlhäuser. “On
Scalable In-Network Operator Placement for Edge Computing”. In:
Proc. of the 27th International Conference on Computer Communica-
tion and Networks (ICCCN). IEEE. 2018, pp. 1–9.

[Ged+19a] Julien Gedeon, Florian Brandherm, Rolf Egert, Tim Grube, and Max
Mühlhäuser. “What the Fog? Edge Computing Revisited: Promises,
Applications and Future Challenges”. In: IEEE Access 7 (2019),
pp. 152847–152878.

[Ged+19b] Julien Gedeon, Martin Wagner, Jens Heuschkel, Lin Wang, and Max
Mühlhäuser. “A Microservice Store for Efficient Edge Offloading”. In:
Proc. of the IEEE Global Communications Conference (GLOBECOM).
2019, pp. 1–6.

[Ged+20] Julien Gedeon, Sebastian Zengerle, Sebastian Alles, Florian Brand-
herm, and Max Mühlhäuser. “Sunstone: Navigating the Way Through
the Fog”. In: Proc. of the International Conference on Fog and Edge
Computing (ICFEC). 2020, to appear.

ix

[Ged17] Julien Gedeon. “Edge Computing via Dynamic In-network Process-
ing”. In: International Conference on Networked Systems (Netsys’17):
PhD Forum. 2017, pp. 1–2.

[GS15] Julien Gedeon and Immanuel Schweizer. “Understanding Spatial and
Temporal Coverage in Participatory Sensor Networks”. In: Proc. of
the 40th IEEE Local Computer Networks Conference Workshops (LCN
Workshops). 2015, pp. 699–707.

Co-Authored Publications

[Heu+19] Jens Heuschkel, Philipp Thomasberger, Julien Gedeon, and Max
Mühlhäuser. “VirtualStack: Green High Performance Network Pro-
tocol Processing Leveraging FPGAs”. In: Proc. of the IEEE Global
Communications Conference (GLOBECOM). 2019, pp. 1–6.

[Mar+19] Karola Marky, Andreas Weiß, Julien Gedeon, and Sebastian Günther.
“Mastering Music Instruments through Technology in Solo Learning
Sessions”. In: Proc. of the 7th Workshop on Interacting with Smart Ob-
jects (SmartObjects ’19). 2019, pp. 1–6.

[Meu+17a] Christian Meurisch, Julien Gedeon, Artur Gogel, The An Binh Nguyen,
Fabian Kaup, Florian Kohnhäuser, Lars Baumgärtner, Milan Schmit-
tner, and Max Mühlhäuser. “Temporal Coverage Analysis of Router-
Based Cloudlets Using Human Mobility Patterns”. In: Proc. of the
IEEE Global Communications Conference (GLOBECOM). IEEE. 2017,
pp. 1–6.

[Meu+17b] Christian Meurisch, Julien Gedeon, The An Binh Nguyen, Fabian
Kaup, and Max Mühlhäuser. “Decision Support for Computational
Offloading by Probing Unknown Services”. In: Proc. of the 26th In-
ternational Conference on Computer Communication and Networks
(ICCCN). IEEE. 2017, pp. 1–9.

[Meu+17c] Christian Meurisch, The An Binh Nguyen, Julien Gedeon, Florian
Kohnhäuser, Milan Schmittner, Stefan Niemczyk, Stefan Wullkotte,
and Max Mühlhäuser. “Upgrading Wireless Home Routers as Emer-
gency Cloudlet and Secure DTN Communication Bridge”. In: Proc. of
the 26th International Conference on Computer Communication and
Networks (ICCCN). IEEE. 2017, pp. 1–2.

[Sch+12] Immanuel Schweizer, Christian Meurisch, Julien Gedeon, Roman
Bärtl, and Max Mühlhäuser. “Noisemap: multi-tier incentive mech-
anisms for participative urban sensing”. In: Proc. of the 3rd Interna-
tional Workshop on Sensing Applications on Mobile Phones. Phone-
Sense ’12. ACM. 2012, 9:1–9:5.

[Wan+19] Lin Wang, Lei Jiao, Jun Li, Julien Gedeon, and Max Mühlhäuser.
“MOERA: Mobility-agnostic Online Resource Allocation for Edge
Computing”. In: IEEE Transactions on Mobile Computing 18.8 (2019),
pp. 1843–1856.

x

Contents

1 INTRODUCTION 1
1.1 General Related Work . 4
1.2 Overview of Contributions and Thesis Structure 5

I BACKGROUND & ANALYSIS 7

2 A TAXONOMY OF EDGE COMPUTING 9
2.1 Terminology . 11

3 CHARACTERISTICS OF EDGE COMPUTING 15
3.1 Promises, Benefits, and Drawbacks . 15
3.2 Access Technologies and Communication Patterns 19
3.3 Device Ecosystem . 20
3.4 Stakeholders and Business Models . 21
3.5 Enabling Technologies . 22

3.5.1 Offloading Mechanisms . 22
3.5.2 Lightweight Virtualization . 23
3.5.3 Software-Defined Networking . 25
3.5.4 Network Function Virtualization 26

4 CLASSIFICATION AND ANALYSIS OF APPLICATIONS 27
4.1 Methodology . 27

4.1.1 Components of Edge Applications 27
4.1.2 Classification Scheme . 30

4.2 Application Survey . 31
4.2.1 Mobile Device Augmentation . 31
4.2.2 Infrastructure Augmentation . 35
4.2.3 IoT Device Augmentation . 40
4.2.4 Human Augmentation . 42

4.3 Summary . 44
4.4 Conclusion and Requirements . 48

4.4.1 Remaining Thesis Outline . 49

xi

II INFRASTRUCTURAL SUPPORT 51

5 COVERAGE ANALYSIS OF URBAN CLOUDLETS 53
5.1 Introduction . 53
5.2 A Multi-Cloudlet Urban Environment . 54

5.2.1 Cellular Base Stations . 55
5.2.2 Routers . 56
5.2.3 Street Lamps . 57

5.3 Related Work . 57
5.3.1 Urban Cloudlets . 57
5.3.2 Coverage . 58

5.4 Datasets . 59
5.4.1 Access Point Locations . 59
5.4.2 Mobility Traces . 61

5.5 Coverage Metrics . 64
5.5.1 Spatial Coverage . 64
5.5.2 Point Coverage . 66
5.5.3 Path Coverage . 66
5.5.4 Time Coverage . 66

5.6 Coverage Analysis . 67
5.6.1 Methodology . 67
5.6.2 Spatial Coverage . 68
5.6.3 Point, Path, and Time Coverage 72

5.7 Conclusion . 75

6 URBAN CLOUDLET PLACEMENT 77
6.1 Introduction and Problem Statement . 77
6.2 Related Work . 78
6.3 System Model . 80

6.3.1 Basic Definitions . 80
6.3.2 Problem Definition . 82

6.4 Placement Strategy . 83
6.4.1 Complexity Considerations . 86

6.5 Evaluation . 86
6.5.1 Setup . 86
6.5.2 Results . 88
6.5.3 Discussion . 91

6.6 Conclusion and Future Work . 93

III CONTROL & EXECUTION 95

7 EDGE COMPUTING FRAMEWORK 97
7.1 Introduction . 97
7.2 Related Work . 99

7.2.1 Computation Offloading . 99
7.2.2 Microservices . 101
7.2.3 Serverless Computing . 103

7.3 Microservice-Based Edge Onloading . 103
7.3.1 Microservice Definition and Structure 104

xii

7.3.2 Service Chaining . 107
7.4 Functional Concept . 107

7.4.1 Microservice Store . 108
7.4.2 Controller . 109
7.4.3 Edge Agent . 111
7.4.4 Message Queues . 112

7.5 Implementation Details . 113
7.5.1 Demo Microservices . 115

7.6 Evaluation . 117
7.6.1 Experimental Setup . 117
7.6.2 Store-Based Microservice Onloading 118
7.6.3 Performance of Chained Services 124

7.7 Conclusion and Outlook . 126

IV STRATEGIES & ADAPTATIONS 127

8 OPERATOR PLACEMENT 129
8.1 Introduction . 129
8.2 Related Work . 131
8.3 System Model and Problem Formulation 133

8.3.1 Underlay Network . 134
8.3.2 Operator Graphs . 134
8.3.3 Operator Placement . 134
8.3.4 Cost Model . 135
8.3.5 Problem Formulation . 136
8.3.6 Edge-Fog-Cloud Architecture . 136

8.4 Heuristic Approach . 137
8.4.1 Placement Restriction . 138
8.4.2 Operator Pinning . 139
8.4.3 Operator Colocation . 140
8.4.4 Strategies for Combining Heuristics 140

8.5 Testbed Implementation . 141
8.6 Evaluation . 142

8.6.1 Experimental Settings . 142
8.6.2 Performance Analysis . 144
8.6.3 Optimality Gap . 147
8.6.4 Discussion . 149

8.7 Conclusion and Outlook . 151

9 CONTEXT-AWARE MICRO-STORAGE 153
9.1 Introduction . 153
9.2 Background and Related Work . 156

9.2.1 Context-Awareness . 156
9.2.2 Mobile Storage . 156

9.3 Context-Aware Storage at the Edge . 158
9.3.1 Motivation and Use Cases . 158
9.3.2 Problem Definition and Requirements 160

9.4 System Design and Implementation . 161
9.4.1 vStore Framework . 162

xiii

9.4.2 Storage Nodes . 166
9.4.3 Master Node . 166
9.4.4 Configuration . 167
9.4.5 Demo Application . 167

9.5 Experience Report . 169
9.5.1 Experimental Setup . 169
9.5.2 Usage Patterns and Storage Decisions 170
9.5.3 Discussion . 171

9.6 Conclusion and Future Work . 173

10 MICROSERVICE ADAPTATIONS 175
10.1 Introduction . 175
10.2 Background and Related Work . 177

10.2.1 Service Adaptation . 177
10.2.2 Approximate Computing . 178

10.3 Adaptable Microservices for Edge Computing 180
10.4 Case Study . 183

10.4.1 Implementation and Test Environment 183
10.4.2 Microservices . 184
10.4.3 Microservice Chains . 186
10.4.4 Execution Time Estimation . 186
10.4.5 Impact of Service Variants . 190

10.5 Integration into an Edge Computing Framework 193
10.6 Conclusion and Outlook . 194

V EPILOGUE 197

11 CONCLUSION 199
11.1 Summary . 199
11.2 Future Work . 201

11.2.1 Discovery . 201
11.2.2 Security, Privacy, and Trust . 202
11.2.3 Business Models . 203

11.3 Outlook . 204

BIBLIOGRAPHY 205

APPENDICES 251

A ACCESS POINT LOCATION ESTIMATION FROM WARDRIVING 253

B TOSCA EXTENSION FOR THE DESCRIPTION OF MICROSERVICES 257

C TOSCA EXTENSION FOR THE DESCRIPTION OF SERVICE CHAINS 261

D TOSCA DESCRIPTION OF THE WORD COUNT SERVICE CHAIN 265

E DETAILED EXECUTION TIMES OF MICROSERVICES 267

xiv

F PYOMO ILP MODEL FOR OPERATOR PLACEMENT 269

G PROBLEM SIZES FOR THE OPERATOR PLACEMENT EVALUATION 273

H QUESTIONS OF THE SURVEY ON MOBILE STORAGE 275

I IMPLEMENTATION DETAILS OF VSTORE 281

J EXAMPLE CLASS DIAGRAM OF AN ADAPTABLE MICROSERVICE 283

K WISSENSCHAFTLICHER WERDEGANG DES VERFASSERS 285

xv

List of Figures

1.1 Overview of thesis structure . 6

2.1 Centralized and decentralized computing paradigms 9

3.1 Edge Computing device ecosystem . 21
3.2 Stakeholders in Edge Computing . 22

4.1 Application components . 28
4.2 Categories of applications . 30
4.3 Contributions of parts II–IV . 50

5.1 A multi-cloudlet urban infrastructure 55
5.2 Darmstadt city cloudlet dataset . 59
5.3 Coverage metrics . 65
5.4 Analysis of spatial coverage . 69
5.5 Scenario-based evaluation of spatial k-coverage 71
5.6 Scenario-based coverage analysis of path, point, and time coverage

for the mobility traces . 73

6.1 Grid model for the cloudlet placement problem 84
6.2 Grid cell sizes for evaluation . 88
6.3 Placement evaluation for a grid cell size of 50 m 89
6.4 Placement evaluation for a grid cell size of 100 m 90
6.5 Choosing K by quality-to-cost ratio . 91

7.1 Comparison of approaches . 104
7.2 CSAR structure for the object detection microservice 105
7.3 Illustration of branching in a microservice chain 108
7.4 Overview of the controller’s functionalities 109
7.5 Edge agent and its interfaces . 111
7.6 Prototype implementation . 114
7.7 Example results produced by the microservices 116
7.8 Demo microservice chain for the evaluation 117
7.9 End-to-end latency . 119

xvii

7.10 Energy consumption . 121
7.11 Impact of the store location on the latency 122
7.12 Comparison with local execution . 123
7.13 Performance comparison of chained services 124

8.1 3-tier architecture of edge, fog, and cloud nodes 137
8.2 Heuristics for operator placement . 138
8.3 Flowchart denoting the sequence of placement heuristics 141
8.4 Testbed implementation . 142
8.5 Operator graph topologies used in the evaluation 145
8.6 Evaluation results on the resolution time 146
8.7 Evaluation results on the optimality gap 148
8.8 Time-cost tradeoff for the heuristics . 149
8.9 Performance and optimality gap for greedy cloud placements 150
8.10 Placement locations . 150

9.1 Comparison of storage approaches . 158
9.2 Measured cellular bandwidth during a football match 159
9.3 Survey results about the context-dependence of choosing storage

services and using multiple storage services 160
9.4 System architecture . 161
9.5 Context aggregator . 163
9.6 Example of rule matching . 166
9.7 Storage node hierarchy . 166
9.8 Screenshots of the demo application . 168
9.9 Node locations and usage heatmaps . 169
9.10 Number of placements per storage node type 172

10.1 Variants of adaptable microservices . 182
10.2 Microservice chains used for the evaluation 187
10.3 Face blurring chain: correlation matrix of variants 190
10.4 Correlation matrices for the individual service variants of the face

anonymization chain . 191
10.5 Mesh reconstruction chain: correlation matrix of variants 192
10.6 Correlation matrices for the individual service variants of the mesh

reconstruction chain . 192
10.7 Integration of adaptable microservices into an Edge Computing

framework . 193

11.1 Results of combined discovery methods 202

I.1 Class diagram of the vStore framework 281
I.2 Database scheme of the SQLite database on the mobile client 282

J.1 UML class diagram of the adaptable face detection microservice . . 283

xviii

List of Tables

2.1 Comparison of Cloud Computing with Edge Computing 12

4.1 Systematic overview of surveyed use cases 45

5.1 Characteristics of access point types . 56
5.2 Number of collected access points . 61
5.3 Mobile application traces . 62
5.4 Parameters for data filtering . 68
5.5 Evaluation scenarios . 68

6.1 Notation of the placement model . 82
6.2 Evaluation parameters . 87
6.3 Number of cloudlets placed for a grid cell size of 50 m 92
6.4 Number of cloudlets placed for a grid cell size of 100 m 92

7.1 Comparison of offloading systems . 102
7.2 Overview of speedup . 118
7.3 Overview of energy savings . 120

8.1 Notation of the INOP problem . 133
8.2 Underlay network . 143
8.3 Properties of nodes . 143
8.4 Input sizes for the operator graphs . 144

9.1 Detail scores per contextual property . 165
9.2 Placement rules . 171
9.3 Total number and sharing ratio of data types 171
9.4 Placement results by location and data type 172

10.1 Examples of approaches for approximate computing 181
10.2 Overview of service variants . 184
10.3 Instance types used for benchmarking 188
10.4 Execution time estimation result for the face detection microservice . 189
10.5 Execution time estimation result for the object detection microservice 189

xix

E.1 Execution times of microservices . 267

G.1 Number of operator graphs per input size 273

xx

List of Algorithms

1 GSCORE . 85
2 Storage matching . 165

xxi

Listings

7.1 TOSCA description of a microservice . 106
7.2 Example of a microservice chain route 113
A.1 accesspoint.rb source code file . 253
F.1 model.py source code file . 269

xxiii

CHAPTER 1

Introduction

Chapter Outline
1.1 General Related Work . 4

1.2 Overview of Contributions and Thesis Structure 5

The present era of digitalization leads to a plethora of networked devices that
capture, forward, and process vast amounts of data. For one part, these are personal
devices, such as smartphones, smartwatches, on-body sensors, and head-mounted
displays. The other part are small-scale sensors and actuators from the domain of
the so-called Internet of Things (IoT). Recent studies by Cisco suggest that the num-
ber of devices connected to the Internet will reach 28.5 billion by 20201 and 500
billion by 20302. It is often necessary or beneficial to carry out the processing of
data outside those end devices, e.g., by performing computation offloading. There
are three main reasons for this:

(i) The devices might have insufficient processing power to deliver satisfactory
results in terms of quality of the computation result or the execution time.
Albeit being equipped with powerful hardware, many devices remain inade-
quate for demanding tasks like video analytics. They also might lack special-
ized components that are indispensable for the task at hand, e.g., a GPU unit
or FPGA.

(ii) Many of the devices are battery-powered. Form factor limitations and design
requirements limit the size and, hence, the capacity of the battery. At the same
time, battery life is a crucial factor for user satisfaction. Therefore, carrying
out computationally intensive tasks that quickly drain the battery remains
impractical.

1https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/white-paper-c11-741490.pdf (accessed: 2019-12-06)

2https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-
731471.pdf (accessed: 2019-12-06)

1

2 Chapter 1. Introduction

(iii) Computations might be carried out collaboratively or require data originating
from different sources. In case that transferring this data is inefficient, e.g.,
because of its size and/or the network connectivity, offloading the computa-
tion instead of the data provides a viable alternative.

For a long time, Cloud Computing was the predominant way to provide data pro-
cessing services. Cloud Computing offers virtually unlimited resources that are con-
centrated in large data centers. Depending on the service model, providers of Cloud
Computing infrastructure largely abstract away many operational and management
problems from their users. Resources are virtualized and users can make use of a
large pool of shared resources. Flexible pay-as-you-go models allow for seamless
and economically viable scaling to one’s needs. However, this service model also
has some inherent drawbacks. Since Cloud Computing infrastructures are typically
located far away from their clients (in some cases on another continent), there is
sometimes a substantial end-to-end latency when accessing services hosted in the
cloud. Furthermore, even today, bandwidth in core networks—those are transited
when accessing cloud services—remains a scarce resource [Vul+15].

Until recently, these drawbacks of Cloud Computing had little practical impact.
On the one hand, most data was both produced and consumed in the cloud, e.g.,
by applications in the domain of big data processing [Ji+12]. In such applications,
data producers and consumers are predominantly well-connected clients, often lo-
cated in datacenters themselves. On the other hand, applications for mobile devices
were also carried out in the cloud because they were not latency-critical. This land-
scape has changed drastically today. New generations of personal devices (e.g.,
smartphones and augmented reality headsets) as well as small-scale sensors and
actuators (e.g., from the IoT domain [Gub+13]) collect vast amounts of data at
the edge of the network. With regards to the usage of this data, we can make the
following observations:

(i) In many cases, the data is only relevant locally, i.e., it is not only gathered at
the edge of the network but also consumed there.

(ii) The raw data and/or the result of processing is ephemeral, i.e., its temporal
relevance is limited. Oftentimes, right after being transferred for processing,
it can be discarded.

Prominent examples for applications whose data behave in such a way are real-time
video analytics [Yi+17], cognitive assistance applications [Che+17b], mobile gam-
ing [LS17], and autonomous driving [Lee+16]. For such applications, the draw-
backs of Cloud Computing become more striking. For use cases with stringent re-
quirements on the latency (e.g., to make real-time decisions in autonomous driv-
ing), Cloud Computing fails to deliver the required quality of service. In addition,
today’s core networks do not offer the bandwidth to support data transfers from the
growing number of IoT devices and sensors.

These shortcomings of Cloud Computing in this changing landscape of devices
and applications have led to the emergence of Edge Computing. Edge Computing
is the concept of leveraging resources in close proximity to end devices—in a sense
bringing the cloud closer to the edge of the network [Cha+14]. Tightly coupled with
Edge Computing is the concept of cloudlets [Sat+09], micro data centers that offer
proximate computing resources. Compared to the cloud, these resources are often
leveraged opportunistically, i.e., users only make use of resources in their surround-
ings for a limited amount of time. Furthermore, resources are more heterogeneous,

3

ranging from data center grade server hardware to single-board computers. Instead
of relying on large, centralized resources in the cloud, the idea of Edge Computing
is to make use of many decentralized resources in the vicinity of end devices. Typ-
ically, these resources are located in the access network, at the (wireless) gateway,
or within 1-hop distance to the gateway, providing latencies in the range of single-
digit milliseconds. Because many clients are highly mobile (e.g., a user’s phone),
they frequently need to migrate their data and computations between the resources
at the edge—a stark contrast to rather static cloud deployments. Besides a reduced
latency, processing data at the edge avoids using expensive links to distant cloud
infrastructures. These characteristics make Edge Computing a crucial enabler for
new classes of low-latency, high-bandwidth applications.

While some private, on-premise deployments of Edge Computing exist (e.g., in
the context of Industrial IoT), today we are far from having public Edge Computing
infrastructures available. This is especially true for urban environments. The vision
of a smart city [Sch+11; Sch+16b] promises the usage of ICT3 to provide liveable
urban environments and cope with problems such as pollution or safety. Smart
cities feature a dense network of highly interconnected mobile people and things.
Future applications such as connected cars that drive autonomously and exchange
data with devices in their surroundings are already being imagined. Such exam-
ples have strict requirements in terms of bandwidth and latency that make Edge
Computing indispensable. However, we still lack essential building blocks for the
realization of those applications. For one part, the requirements of individual types
of applications are not well understood. Hence, the potential benefits of using Edge
Computing remain unclear in many cases. Second, we lack the resources to carry
out computations at the edge. While our urban spaces are filled with hardware that
could host small-scale cloudlets, those are not made available today. Doubts remain
about the practicability of having a dense, city-wide pool of computing resources
to serve highly mobile users at any time. Third, the characteristics of Edge Com-
puting differ from current Cloud Computing deployment models, and therefore,
established mechanisms for the operation and management of infrastructure and
applications cannot be applied to Edge Computing. Examples include the place-
ment problem of data and computations, how to virtualize and share resources,
and how to schedule access to those resources.

This thesis presents contributions in the field of Urban Edge Computing that close
some of these gaps. Section 1.2 outlines our contributions in detail. The contribu-
tions provide answers to the following questions:

• What are the characteristics, benefits, and drawbacks of Edge Computing?

• What are the possible application domains for Edge Computing? Which of
the benefits of Edge Computing are especially crucial for what types of appli-
cations?

• How and where can we provide ubiquitous computing resources in an urban
environment?

• What is the granularity in which computations should be offloaded?

• Where should computations be carried out at the edge?

• How can edge resources be used in a (cost-)efficient way?

3Information and communications technology

4 Chapter 1. Introduction

• Can the edge be used as a distributed storage for user data?

• How do we need to adapt computing services in view of strict user require-
ments and constrained edge resources?

1.1 General Related Work

The contributions of this thesis are set in the field of Edge Computing. This sec-
tion intends to present general related work that introduces Edge Computing and
similar concepts to the unfamiliar reader. Related work specific to the individual
contributions of this thesis is reviewed in sections 5.3, 6.2, 7.2, 8.2, 9.2, and 10.2.

The challenge to augment the capabilities of (mobile) devices by leveraging ex-
ternal resources has been envisioned for a long time in the field of pervasive comput-
ing [Sat01]. With the advent of Cloud Computing, such resources became widely
available to realize this vision. Since then, Mobile Cloud Computing (MCC) [FLR13]
has been the predominant way to offload computations.

An important conceptual enabler for the move towards Edge Computing was
the introduction of cloudlets [Sat+09; Sat11]. In these initial publications outlining
the concept, cloudlets have been defined as small-scale but resource-rich computing
resources in the proximity of (mobile) users. They have been further described as a
middle-tier between end devices and the cloud [Sat+14]. This notion of a middle-
tier that is close to end users and devices led to the notion of Edge Computing
[Sat17; Shi+16].

As we will further discuss in Chapter 2, other concepts exist, whose definitions
sometimes lack a clear distinction from Edge Computing. Two of the most notable
are Fog Computing and Mobile Edge Computing (MEC). Yi et al. [Yi+15; YLL15]
define the concept of Fog Computing and use the term interchangeably with Edge
Computing. Mahmud et al. [MKB18a] present a taxonomy of Fog Computing and
define Fog Computing as an intermediate layer between IoT devices and the cloud.
Mobile Edge Computing refers to the placement of computing resources in the radio
access network [Bec+14; Mao+17; Abb+18]. Since this network is typically close
to the end user, we see Mobile Edge Computing as one possible realization of Edge
Computing.

Given the timeliness and broadness of the topic, various surveys explore the
field of Edge Computing. Yousefpour et al. [You+19] present an extensive survey
of publications related to Edge Computing and Fog Computing. Shi et al. [Shi+16]
present several case studies and outline future challenges in Edge Computing. Sim-
ilarly, Varghese et al. [Var+16] define motivations, opportunities, and challenges
of Edge Computing. The survey of Li et al. [Li+18] focuses on architecture and
management issues. Managing resources in an edge environment is a crucial build-
ing block. In this domain, Hong and Varghese [HV19] review publications and
classify architectures, infrastructures, and algorithms for resource management in
Edge Computing and Fog Computing. Further specialized surveys shed light on
Edge Computing from the perspective of networking [Lua+16] or security [RLM18;
YQL15; Sto+16].

No previous work provides a comprehensive overview and classification of appli-
cations that can benefit from Edge Computing. A comparison between cloudlets and
Cloud Computing can be found in [Pan+15]; it is however limited to very few appli-
cation scenarios. Existing works are either limited to a specific application domain,

1.2. Overview of Contributions and Thesis Structure 5

e.g., IoT [Has+18; Hec+18; Yu+18], or smart city applications [Per+17a; Tal+17].
Other classifications lack prominent examples like augmented reality [Pul+19]. We
will close this gap with our application survey in Chapter 4.

1.2 Overview of Contributions and Thesis Structure

This thesis makes several contributions to the understanding, planning, deploy-
ment, and operation of a public Edge Computing infrastructure in an urban envi-
ronment. An important characteristic of the Urban Edge Computing environment
is its heterogeneity in two dimensions. First, several devices that capture and/or
consume data are involved. For many of our experimental studies, we use mobile
phones, however the results are applicable to other devices. These could range from
small sensors and actuators to connected cars. Common to them is the need to per-
form computations or store data outside of the device. Second, we also consider the
compute infrastructure to be heterogeneous, ranging from close-by equipment co-
located with one’s access gateway to resources in the transit network to the cloud.
Contrary to previous works, we consider these heterogeneity characteristics to pro-
vide an integrated solution for Urban Edge Computing, ranging from the placement
of physical resources to the adaptation of the runtime environment.

This thesis is structured into five parts. Figure 1.1 provides a complete overview
of the structure of this thesis. The core contributions that provide building blocks
for an Urban Edge Computing system are highlighted with a green background.

PART I contributes to the general understanding of the field of Edge Computing in
two ways. First, we refine the definition of Edge Computing (Chapter 2) and
analyze its characteristics, including advantages and drawbacks (Chapter 3).
Second—based on the observation that it remains unclear which applications
could benefit from certain aspects of Edge Computing—we present an exten-
sive survey of application use cases in Chapter 4. We present a systematic
way to break down applications by identifying four critical building blocks
of applications (data consolidation, filtering & pre-processing, computation
offloading, and data storage & retrieval). We then propose to classify appli-
cations according to the notion of augmentation, and for representative ex-
amples, we map the requirements of each application to how well they can be
served by Edge Computing. The abstract notion of application building blocks
allows us to generalize our findings and draw conclusions about the suitabil-
ity of employing Edge Computing for certain types of applications. This part
concludes with the definition of requirements for Urban Edge Computing that
will be addressed in the remaining parts of the thesis.

PART II examines the physical infrastructure for Urban Edge Computing, i.e., which
infrastructures can be leveraged in an urban environment to provide proxi-
mate computing resources. To this end, we suggest placing cloudlets on cellu-
lar base stations, WiFi routes, and augmented street lamps. Chapter 5 shows
the viability of this idea by conducting a large-scale study of urban cloudlet
coverage based on datasets captured in a major city. In Chapter 6, we present
a placement strategy that decides which of those infrastructures to upgrade
with cloudlets, taking into account their heterogeneity in terms of cost, com-
munication range, and resources.

6 Chapter 1. Introduction

PART III presents an execution framework for Edge Computing that is based on the
concept of composable microservices (Chapter 7). Unlike common offloading
approaches, we advocate the concept of store-based microservice onloading, in
which microservices are made available in a repository and do not need to
be transferred from the client device, resulting in reduced end-to-end latency
and energy consumption on the client device. Furthermore, we present a
concept for the definition and execution of service chains, providing an easy
way for developers of applications to use the framework. We implement the
abovementioned concept in a prototype and evaluate it with applications run-
ning on a smartphone.

PART IV addresses runtime decisions of the previously presented execution frame-
work. In particular, this concerns the problem of where to place functional
parts of applications (Chapter 8) and data (Chapter 9). For the former, we
present a heuristic-based placement strategy that minimizes the solving time
with only a small optimality gap. For the latter, we present a middleware that
makes rule-based storage decisions based on users’ context. In Chapter 10,
we extend our microservice-based execution to adaptable microservices. We
introduce the concept of service adaptations in three different dimensions and
showcase the tradeoff between execution time and quality of results that such
adaptations can enable.

PART V concludes this thesis by summarizing its findings and giving an outlook on
future work (Chapter 11).

Control &
Execution

Strategies &
Adaptations Operator

Placement
Context-Aware
Micro-Storage

Microservice
Adaptations

Chapter 8 Chapter 9 Chapter 10

Edge Computing Framework

Chapter 7

Pa
rt

 II
Pa

rt
 II

I
Pa

rt
 IV

Infastructural
Support Urban Cloudlet Placement

Chapter 5

Coverage Analysis of Urban
Cloudlets

Chapter 6

Part I: Background & Analysis

Part V: Epilogue

Taxonomy

Chapter 2

Characteristics

Chapter 3

Application Survey

Chapter 4

Conclusion

Chapter 11

FIGURE 1.1: OVERVIEW OF THESIS STRUCTURE

Part I

Background & Analysis
The first part of this thesis provides a detailed introduction and analysis
of the field of Edge Computing.

Our first contributions consist of a taxonomy (Chapter 2) and analysis
of Edge Computing characteristics (Chapter 3), thereby contributing to
the general understanding of Edge Computing and the refinement of its
definition.

Based on the identified characteristics, Chapter 4 performs a systematic
survey of Edge Computing use cases, proposing a classification scheme
and analyzing potential applications with regards to the previously de-
fined characteristics of Edge Computing. Following the insights of this
survey of the Edge Computing landscape, this part concludes with the
definition of requirements for Urban Edge Computing.

This part is largely based on [Ged+19a]. Verbatim copies of text from this publication are printed in
gray color throughout this part of the thesis. Tables and figures taken or adapted from this publication
are marked with † in their caption.

7

CHAPTER 2

A Taxonomy of Edge Computing

Throughout the history of computing, a constant back-and-forth swinging between
centralized and decentralized computing approaches has been observed [PA97]. We
map this general observation to major milestones that have led to today’s computing
landscape, outlining four major eras in Figure 2.1. The first transition towards
decentralized computing was the move from centralized mainframes to personal
computers.

Cloud Computing. In the mid-2000s, we saw a major disruption with the ad-
vent of Cloud Computing. Cloud Computing offers abundant virtualized resources
in large data centers. These resources can be used with flexible pricing models,
often on a pay-as-you-go basis. Scaling in and out according to current demands
can be done at a moment’s notice and therefore removes the problem of over- or
underprovisioning of resources.

We argue that Cloud Computing belongs to the category of centralized ap-

FIGURE 2.1: CENTRALIZED AND DECENTRALIZED COMPUTING PARADIGMS†

9

10 Chapter 2. A Taxonomy of Edge Computing

proaches because computing power is concentrated in a few distant locations
(compared to the number of clients that use it). Leveraging cloud resources for
offloading from mobile devices is termed Mobile Cloud Computing (MCC) [FLR13]
for which a variety of frameworks exist [Cue+10; Chu+11; Kos+12; Kem+10].
Emerging classes of applications that require fast processing of large data gener-
ated from client devices and surrounding sensors have led to the latest distributed
computing paradigm, termed Edge Computing.

Edge Computing. Edge Computing is the concept of placing and using storage
and computing resources close to the (mobile) devices that produce and consume
the data (see Definition 2.1). One contrasting approach is Cloud Computing, where
said resources are located at data centers. Edge Computing is carried out using
resources on edge nodes or edge devices. Similarly, the term cloudlet [Sat+09] has
been coined to denote small-scale data centers close to users.

Entities in Edge Computing. In the context of computation offloading, nodes that
are leveraged to perform computations are called surrogates (see Section 3.5.1).
Edge sites are the physical environments where the edge resources are located. We
refer to an edge system or edge framework to denote the entirety of resources at the
edge, their clients, and control entities responsible for managing the resources.

Relationship between Edge Computing and Cloud Computing. It is important
to note that Edge Computing aims not to be a replacement for Cloud Computing,
but to complement it [Vil+16b]. This makes sense if we assume that every appli-
cation needs access to three basic resources: (i) computation, (ii) communication,
and (iii) storage. The need for computation and storage resources is well-served by
Cloud Computing; in fact, the reason for the success of Cloud Computing is its capa-
bility to provide resource elasticity, which means that resources can be scaled in and
out in order to instantly fit the customers’ needs. On the downside, Cloud Comput-
ing cannot offer any guarantees w.r.t. the communication part because data centers
are located away from the consumer, and typically, neither the cloud provider nor
the user has full control over the transit network. Edge Computing solves this issue
in the sense that it adds scalability in the network dimension, i.e., more users can be
served with low-latency links when adding more edge sites (e.g., at users’ wireless
gateways). However, because of the limited resources at individual edge sites, Edge
Computing cannot offer the same overall elasticity as Cloud Computing. Further-
more, realizing scalability in any of the three resource dimensions requires much
more complex management in view of the dynamics in the network (e.g., caused
by user mobility or sudden local changes in demands).

For these reasons, in practice, we expect an interplay of Cloud Computing and
Edge Computing. Edge Computing offers the additional scalability required for
processing locally relevant tasks in an environment with a large number of data
generators and consumers. Complex, long-running, and data-driven tasks that are
not time-critical will benefit more from the abundance of scalable resources in the
cloud. Similarly, Edge Computing will most likely not be able to replace the cloud
for the long-term storage of data because of the limited capabilities of edge devices.
However, user-facing time-critical tasks may benefit from a reduced latency in the
critical path when using infrastructure at the edge, and this might also include
the caching of ephemeral data on edge devices. In addition to the latency benefit,

2.1. Terminology 11

caching data at the edge has the potential to reduce bandwidth usage in the core
network.

Differences in resources and their distribution. While Cloud Computing of-
fers virtually unlimited resources in geo-distributed data centers, resources in Edge
Computing are locally clustered around its consumers. These computing nodes are
more heterogeneous w.r.t. to their available resources and are often leveraged op-
portunistically. Especially if we consider non-redundant, consumer-grade devices
for computations, the availability and reliability of resources at the edge might be
limited. However, Edge Computing can make the communication more reliable, in
the sense that it can offer an alternative if network links to the cloud break down.
This is especially interesting for disaster scenarios where Edge Computing can offer
an alternative infrastructure to keep critical tasks alive. Edge resources can often
be accessed within one hop from the wireless gateway that users are connected to.
Ideally, Edge Computing systems can support user mobility, e.g., by migrating user
data and computations to the next proximate location. In addition, wireless gate-
ways can provide additional contextual information to the application, something
not available in Cloud Computing.

Computation offloading and virtualization. Another major difference is the
granularity of offloading. In Cloud Computing, we see large parts of applications
being moved to remote resources, while at the edge, offloading is more fine-grained
and needs a more careful decision of what to offload. Individually offloaded com-
ponents at the edge are often part of a processing pipeline consisting of several
of those components that do not necessarily run on the same edge device. Ad-
ditionally, we can observe that because of limited resources at the edge and the
higher user dynamics, virtualization technologies used for Edge Computing tend
to be more lightweight. For example, containers are often used instead of virtual
machines (see Section 3.5.2).

Loose coupling. We define the loose coupling between clients and the comput-
ing and communication infrastructure as another important characteristic of Edge
Computing. This is an especially important characteristic in Urban Edge Computing,
where the computing resources are shared among multiple users and applications.
Other concepts that are sometimes referred to as Edge Computing deploy static re-
sources on-premise for one particular user and application. Those deployments,
however, do not face the same challenges, e.g., with regards to network coverage
and connectivity, device and data mobiltiy, or scaling.

Summary. To conclude this section, Table 2.1 summarizes the differences between
Edge Computing and Cloud Computing.

2.1 Terminology

For the remainder of this thesis, we will use the terms Edge Computing and Urban
Edge Computing as described in Definition 2.1. Besides the term Edge Computing,
other terminology that denotes similar concepts exist, most notably the term Fog
Computing [Yi+15; Bon+12; Ged+18a]. Fog Computing is a term originally coined

12 Chapter 2. A Taxonomy of Edge Computing

TABLE 2.1: COMPARISON OF CLOUD COMPUTING WITH EDGE COMPUTING †

Cloud Computing Edge Computing

Proximity to

client devices
low high

End-to-end latency high low

Infrastructure centralized data centers decentralized cloudlets

Heterogeneity of

computing hardware
low high

Number of computing

resource locations
few many

Resources at

individual locations
many few

Geo-distribution of

computing resources
locally clustered widespread

Availability & reliability

of resources
high varying

Virtualization heavyweight lightweight

Connection to resources long-thin short-fat

Access to resources through core network
typically via 1-hop

wireless gateway

Applications data-driven user-driven

Offloading granularity
computationally intensive

mostly entire applications
and latency-critical parts

by Cisco [Bon+12] in the context of their IOx platform, envisioning to leverage
untapped processing power in network middleboxes when those are either over-
provisioned or not running at full load.

While the terms edge and fog both allude to the same concept—processing data
close to end devices—it is worth noticing that there is a broad spectrum of (some-
times blurry) definitions and arguments in trying to define the differences between
the two. One possible distinction is that Fog Computing extends the cloud towards
the edge, while Edge Computing originates from the need of end devices to of-
fload computations. However, the exact definitions remain an ongoing discussion
in academia [Mar+17; VR14]. Closely tied to the concept of Fog Computing are
Cloudlets. Cloudlets have been described as a middle-tier [Sat+14] that extends
the cloud towards the edge [Ver+12a; Lew+14].

Mobile Edge Computing (MEC)—more recently termed Multi-Access Edge
Computing—refers to the colocation of resources at the Radio Access Networks
(RAN), e.g., at cellular base stations [Abb+18]. This can therefore be considered
as a special case of Edge Computing, mostly from the point of view of mobile
network operators. Especially with the advent of the fifth generation of cellular
networks (5G), MEC deployments are expected to gain more importance [Hu+15b;
Nun+15].

2.1. Terminology 13

Other hybrid terms exist, notably Mist Computing [Pre+15] and Osmotic Com-
puting [Vil+16b]. The former can be thought of being similar to Fog Computing
but closer to the edge devices, while the latter advocates a seamless migration of
services from data centers to the edge.

DEFINITION 2.1: EDGE COMPUTING AND URBAN EDGE COMPUTING

Edge Computing denotes the general concept of placing computing and/or com-
munication resources close to the action scene, e.g., in proximity of users, sen-
sors, or actuators. We refer to Urban Edge Computing as the application of this
concept in an urban environment.

CHAPTER 3

Characteristics of Edge Computing

Chapter Outline
3.1 Promises, Benefits, and Drawbacks 15

3.2 Access Technologies and Communication Patterns 19

3.3 Device Ecosystem . 20

3.4 Stakeholders and Business Models 21

3.5 Enabling Technologies . 22

In this chapter, we analyze the characteristics of Edge Computing. We start
by analyzing what the potential benefits and drawbacks of Edge Computing are
(Section 3.1). We then discuss the characteristics of “the edge” in terms of commu-
nication (Section 3.2), the involved devices (Section 3.3), and stakeholders (Sec-
tion 3.4). Lastly, we review enabling technologies for Edge Computing in Sec-
tion 3.5.

3.1 Promises, Benefits, and Drawbacks

As outlined in the previous chapter on the taxonomy of Edge Computing, the gen-
eral idea is to move storage and processing capabilities from the cloud closer to
the clients and towards the origin of the data, often by opportunistically using the
infrastructure in a highly dynamic mobile environment. This potentially brings a
number of advantages, the most important of which we describe in the following:

ADVANTAGE I: LOWER LATENCY | As we will discuss in Chapter 4, many types of
applications have stringent requirements on the end-to-end latency, i.e., the
overall time from requesting a service (e.g., a computation) to obtaining the
result. One important factor on this critical path is the network delay. Cloud
Computing infrastructures are geographically widely distributed across data
centers, and the user typically has little to no control over where the requests

15

16 Chapter 3. Characteristics of Edge Computing

will be processed. Hence, it is not uncommon for requests to be directed to
distant data centers.

Many works have presented empirical measurements of network latencies
and motivated Edge Computing based on those numbers [Che+17b; Ged+17;
Sat+09]. For instance, in [Sat+09] the authors measure the mean network
round-trip times between New York and Berkeley to be 85 ms. If we now
imagine an application that needs to process a video scene in near real-time
with a delay constraint of less than 50 ms, the mere network latency already
violates this constraint. Even by optimizing transit networks, physical lower
bounds remain. In contrast, the access delay to a nearby wireless gateway
in the case of WiFi is typically in the order of magnitude of a few millisec-
onds. Chen et al. [Che+17b] have conducted extensive empirical studies us-
ing a cognitive assistance application and conclude that using the cloud over
a cloudlet adds around 100–200 ms of latency. Besides the physical lower
bounds of transmissions, the network jitter, i.e., the variation in delay is an-
other issue for latency-critical Edge Computing applications. This variance is
caused, e.g., by different load levels in the network and makes guaranteeing
a latency close to the lower bound impossible.

ADVANTAGE II: LESS BANDWIDTH UTILIZATION IN THE CORE NETWORK | In the cur-
rent landscape of billions of mobile devices that generate data, we observe
that captured data often only is of limited spatial and temporal relevance.
As an example, we can imagine an intelligent scheduling scheme for traffic
lights that is based on reported sensor data from vehicles [BB14]. In this
example, the data is relevant only for the time the vehicles are in the vicin-
ity of the traffic light. Applications often do not consume every individual
sensor reading, but data that is derived from those individual readings, e.g.,
aggregate or filtered values, inferred events, or outliers. If, however, all raw
values would be streamed to the cloud for analysis, this might overload the
core network. This is especially relevant since wide-area network bandwidth
remains a scarce resource [Vul+15]. The same holds true for many of today’s
wireless access networks, e.g., as motivated in [Wan+18b]. Especially large,
continuous data streams can be a burden on backhaul networks. Distributed
processing and aggregation of data streams along the path to the consumer
can help to mitigate this. In the domain of Wireless Sensor Networks this is
a popular approach [Fas+07] that can easily be mapped to aggregation by
intermediate edge nodes.

Besides aggregation, Edge Computing can also offer storage capabilities
[May+17] that take into account contextual information for the decision on
where to store the data [Ged+18b]. For example, at large-scale events with
overloaded mobile networks, edge nodes can provide storage to share data
among people that are close-by. Chapter 9 will present our contribution of
a context-aware edge storage framework. Other works have investigated
edge storage for caching [Zha+15a] or buffering of IoT data [Psa+18]. It is
worth noticing that most of these works assume the data to be short-lived.
However, storing non-ephemeral data on unreliable edge nodes requires
replication mechanisms, as demonstrated in [MRS19]. The savings in data
transfers to the cloud when using Edge Computing has been demonstrated in
practice with various use cases, from document synchronization [Hao+17]
to mobile gaming [Var+17]. For example, Hao et al. [Hao+17] demonstrate

3.1. Promises, Benefits, and Drawbacks 17

a reduction in data transfers to the cloud of up to 90% in an application for
document synchronization.

ADVANTAGE III: ENERGY SAVINGS AND INCREASED ENERGY EFFICIENCY | Mobile de-
vices have an inherently limited battery life. Advances in battery technology
have not kept pace with the increased processing capabilities of modern mo-
bile devices [AS13; KAB13]. Furthermore, their small form factors limit the
size of the battery. Battery life is an important factor for the overall user satis-
faction [Hav11] and remains an important constraint for many applications,
e.g., mobile gaming [Hua+14]. Carrying out compute-intensive tasks on the
device is detrimental to the device’s battery life and, thus, has a negative
impact on the user’s experience. This factor is even more crucial for small-
scale sensors that are deployed in the environment and designed to never be
serviced. In this case, the battery life equals the lifetime of the device. There-
fore, moving the computations away from the devices is beneficial for their
battery life. This has been shown for both cloud [KL10] and edge [Hu+16]
infrastructures.

Saving energy is not only important for end devices, but also for edge nodes
on which the computations take place [RAD18]. Besides the advantage of
reduced operational cost, Edge Computing nodes are often enclosed in tight
physical spaces and therefore, heat dissipation must be limited. Hence, many
works have presented energy-efficient mechanisms for resource allocation
[You+17], offloading [Nan+17; Zha+18d], and data delivery [Jay+14] in
Edge Computing. Xiao et al. [XK17] suggest cooperative offloading, in which
edge nodes forward tasks among each other. The authors study the tradeoff
between quality of experience for users and the fog nodes’ energy efficiency
and present a cooperation strategy for optimal workload allocation.

The previous examples have outlined the partial benefit from the point of
view of mobile devices and edge nodes. However, it is important to note that
to analyze the overall energy benefit of Edge Computing, we need a more
holistic view. While offloading might save battery life on the mobile device,
this does not answer the question of whether the chosen edge resources are
more energy-efficient compared to Cloud Computing infrastructures. As one
approach, Jalali et al. [Jal+16] take into account the energy efficiency of
the access network that is used when performing Edge Computing. The au-
thors conclude that micro data centers at the edge can indeed be more energy
efficient than Cloud Computing. They further identify the processing of con-
tinuous data streams as an ideal edge application, especially when those data
streams are on end user premises and have a low access rate (e.g., video
surveillance). Boukerche et al. [BGG19] survey energy-efficient offloading
in Mobile Cloud Computing from the perspective of both the mobile device
and the cloud infrastructure. The authors consider different types of deploy-
ments and especially mention the possible energy overhead of the offloading
process.

ADVANTAGE IV: BETTER PRIVACY AND DATA PROTECTION | In Cloud Computing, users
typically have little control over their data and where exactly it is processed.
Yet, users’ end devices generate more and more data at the edge, many of
which is personalized and privacy-sensitive, e.g., in healthcare-related appli-
cations. As users become more sensitive to privacy issues, they might not be

18 Chapter 3. Characteristics of Edge Computing

willing to accept the current practice of how data is processed. For example,
Davies et al. [Dav+16] outline how privacy concerns hinder user acceptance
of IoT deployments.

Edge Computing offers the opportunity to act as a privacy-enabling mediator
between the user’s data and cloud-based services, especially when users have
access to edge infrastructures that are within their trust domain or that are
operated by trusted providers. Since Edge Computing resources are offered
on-site, providers are subject to local laws and regulations. Depending on the
location, this can give certain assurances, e.g., with regards to data protection
laws. Furthermore, following the same argument, Edge Computing providers
can typically be held accountable more easily than (foreign) Cloud Comput-
ing providers. Edge Computing allows the application of privacy-preserving
mechanisms (e.g., as proposed in [Shi+11]) early in the processing chain and
close to the data source, hence reducing the impact of potentially untrustwor-
thy processing entities that subsequently handle the data. The fact that in a
public Edge Computing infrastructure, multiple providers would be involved
further strengthen the benefits with regards to privacy and anonymity. Pro-
tocols like cMix [Cha+16] have shown that anonymous communication can
only be broken if all parties cooperate to do so. We argue that this is an
unrealistic scenario in a multi-provider Edge Computing infrastructure.

Besides data from individuals, data collected in public spaces is also relevant
to privacy. For example, a camera mounted on top of a road intersection cap-
tures video streams that are used to optimize traffic and dynamically adapt the
traffic lights. This application may be realized in different processing steps,
e.g., detecting cars in individual lanes, aggregating their number, computing
a strategy to optimize the traffic, and so forth. To preserve drivers’ privacy, the
blurring of license plates would be a critical task that has to be carried out at
the edge before transferring the video streams for further analysis. Similarly,
Basudan et al. [BLS17] present an encryption scheme to ensure privacy when
monitoring road conditions. Other works explore privacy-preserving publish-
subscribe mechanisms at the edge [Wan+17] or how edge infrastructures can
help in the dissemination of information containing certificate revocations
[Alr+17].

While many of these potential benefits are acknowledged in literature, less attention
has been directed to the possible drawbacks of Edge Computing. In particular, we
consider the following aspects to be problematic:

DRAWBACK I: UNRELIABLE DEVICES | Because Edge Computing relies on small-
scale, often consumer-grade devices that are used opportunistically as edge
nodes, their reliability cannot compete with advanced measures for reliabil-
ity in data center environments, such as UPS1, emergency power systems,
redundant cooling, redundant network connections and high-speed intercon-
nections that enable large-scale replication. Edge Computing must therefore
either be tolerant of failures or mitigate the effects via replication schemes,
e.g., by replicating stored data across edge nodes [MRS19].

DRAWBACK II: LOW INDIVIDUAL COMPUTING POWER | The computing power of in-
dividual edge nodes is usually much lower compared to a cloud data center.

1uninterruptible power supply

3.2. Access Technologies and Communication Patterns 19

For latency-tolerant heavy computations, such as neural network training, the
cloud will remain the predominant deployment model.

DRAWBACK III: LIMITED SCALE-OUT CAPABILITIES | Since the capacity at each edge
site is limited, it is much more difficult to scale out edge applications with high
demands in a small area. Because data centers are designed to serve large
geographical areas, local spikes in demand, e.g., during an event, are small in
comparison to the total demand. In contrast, Edge Computing infrastructure
may be overwhelmed in such a situation as the area over which extra demand
can be distributed while still fulfilling good quality of service might be limited.

DRAWBACK IV: HIGH OPERATIONAL EXPENSES | Edge Computing is likely to be more
expensive than traditional Cloud Computing, which benefits much more from
economies of scale. Cost benefits of large-scale data centers [Gre+08] that
cannot be exploited in Edge Computing include rental cost, energy cost, and
personnel cost. Data centers are often built in places with low taxes, low land
costs, and low energy prices. They concentrate vast amounts of homogeneous
servers and networking hardware in one easy to reach location. Cloudlets,
however, must be geographically much closer to their clients, which prevents
strategic positioning in low-price areas. Also, due to the distribution over
many small-scale locations, the maintenance is much more complex. For Edge
Computing to be economically viable, the resulting higher cost must be com-
pensated by lower data transmission costs or other benefits, like increased
privacy or the need for ultra-low latency.

DRAWBACK V: CONCERNS ABOUT SECURITY AND TRUST | The idea to opportunisti-
cally leverage devices in one’s surroundings to carry out computations and
store data naturally raises concerns about such a system’s security and trust-
worthiness. According to [Muk+17], existing mechanisms for the cloud can-
not be applied to edge environments. Roman et al. [RLM18] survey the
security threats and corresponding challenges in Edge Computing and Fog
Computing. To make Edge Computing pervasive, unified trust models and
authentication mechanisms across stakeholder boundaries are required.

3.2 Access Technologies and Communication Pat-
terns

We now turn our attention to the typical access technologies and communication
patterns in Edge Computing. While Cloud Computing is accessed through wired
backhaul connections, one characteristic of Edge Computing is that clients are typ-
ically connected to the edge resources through wireless gateways. We expect edge
resources to be either colocated on those gateways or within 1-hop distance. To
connect to wireless gateways, client devices use different access technologies. The
most common are WiFi [Ged+17] or cellular [SBD18] connections. In this domain,
we can observe development in two aspects:

(i) NEW COMMUNICATION STANDARDS EMERGE | One example of emerging stan-
dards are 5G networks that are expected to be deployed soon. 5G not only
promises much higher bandwidth and lower latencies compared to current

20 Chapter 3. Characteristics of Edge Computing

cellular networks, but it will also provide additional services like context-
awareness on the network access layer [Ban+14]. Other future wireless ac-
cess technologies include millimeter wave [Aba+] and visible light communi-
cation [JLR13]. These (future) technologies will contribute to a widespread
coverage of high-speed wireless access points.

(ii) NOVEL GATEWAY DEVICES | Existing access technologies will be embedded into
new devices that can act as gateways. One example in the urban space are
street lamps, as we will describe in Chapter 5. While today only providing
lighting, emerging smart lamp posts are designed to offer colocated access
and computing resources. A second example is to leverage computing re-
sources present on modern cars [Hou+16]. It has also been suggested to
place computing resources on UAVs2 [Sat+16; JSK18b].

Besides the wireless access technologies, we can also distinguish Edge Com-
puting systems by their communication patterns. Generally speaking, our comput-
ing world consists of humans and various things that are connected. Depending
on which entities communicate with whom, different terminology is used, such as
Machine-to-Machine (M2M), Device-to-Device (D2D), Car-to-Infrastructure (C2I),
Car-to-Car (C2C), etc. The important distinction between all those terms is whether
we have autonomous communication between devices or human actors in the loop.

3.3 Device Ecosystem

One of the most striking characteristics of Edge Computing is the heterogeneity of
devices that are involved in the capture and processing of data. The number of
mobile devices and sensors that capture data has dramatically increased in recent
years. One prominent example are today’s smartphones. According to a recent
study3, the number of mobile broadband subscriptions has reached 6 billion as of
today and will grow to over 8 billion by 2024. Similarly, the IoT aims to connect a
variety of objects such that these are able to communicate with each other [AIM10].
Other end devices include smartwatches, smart glasses, and personal on-body sen-
sors. Common to all of them is that they generate large amounts of data that need
further processing to provide additional services. This need for processing has been
one of the most important aspects for the development of Edge Computing.

In Edge Computing, not only end devices are heterogeneous, but also the de-
vices on which the computations are carried out. Every device in the vicinity of the
mobile client that has spare resources to perform computations can be considered
for Edge Computing. This can range from consumer-grade hardware to hardware
designed for data centers. For example, small-scale single-board computers such as
Raspberry Pis have been used in Edge Computing [Pah+16; BZ17] as well as home
routers [Meu+15] or compact setups with more powerful hardware [RAD18]. In
between end-user locations and cloud data centers, we can also leverage network
middleboxes that have additional computing capacity available. This was the initial
use case for Cisco’s vision of Fog Computing [Bon+12]. As we move closer to the
edge of the network, we expect to find devices with fewer resources but in greater

2unmanned aerial vehicle
3https://www.ericsson.com/en/mobility-report/reports/june-2019 (accessed: 2020-03-22)

3.4. Stakeholders and Business Models 21

TAXI

FIGURE 3.1: HETEROGENEOUS EDGE COMPUTING DEVICE ECOSYSTEM†

number. This reverses as we move closer to the cloud because most locations at the
edge of the network cannot physically accommodate the resources found in a data
center.

In summary, the ecosystem of devices is very heterogeneous, both in terms of
their functions and form factors, but also regarding their capabilities and computing
power. Figure 3.1 depicts this heterogeneous ecosystem of devices that are involved
in Edge Computing, ranging from sensors and consumer devices to more powerful
computing infrastructure as we move towards the core network. The heterogeneity
in Edge Computing is a main requirement that planning and runtime decisions (e.g.,
with regards to the placement and assignment of resources) need to consider.

3.4 Stakeholders and Business Models

In the previous sections, we discussed Edge Computing’s heterogeneity w.r.t. ap-
plications and devices. The variety of stakeholders is another dimension of het-
erogeneity in Edge Computing. Stakeholders in this context are individual users
or organizations that (i) use services deployed at the edge, (ii) operate edge infra-
structure, or (iii) benefit from edge deployments. Figure 3.2 shows an example of
three stakeholders (the user of a service, the service provider, and the infrastructure
provider). The figure also shows their (partially overlapping) interests.

Users have certain requirements and expectations regarding the quality of ser-
vice delivered by applications. Notable examples are a low (perceived) latency and
high service availability. For many future use cases, leveraging Edge Computing to
meet those demands will be indispensable. Service providers in turn are responsible
for ensuring that their services can meet these demands to satisfy their customers.
For infrastructure providers (e.g., ISPs and operators of cellular networks) Edge
Computing can be an opportunity to generate additional revenue. This, for exam-
ple, can be achieved by either offering (virtualized) resources at the access network
or renting out space for server colocation at those access gateways. Besides com-
mercial offerings, we can also imagine that Edge Computing infrastructures will be
offered free of charge. For example, cities could provide those as a service to their

22 Chapter 3. Characteristics of Edge Computing

Customer
Satisfaction

ensure service
availability

e cient
infrastructure

utilization

Infrastructure
Provider

high quality
of service

Service
Provider

User

FIGURE 3.2: STAKEHOLDERS IN EDGE COMPUTING †

citizens [Mot+13]. Similarly, private citizens could offer resources for free. This
kind of sharing economy has already been seen for providing WiFi connectivity
[EFP10]. Therefore, offering computing power could be a next step.

The diverse ownership of edge resources and the lack of a unified business model
is also one of the major reasons why finding appropriate business models for Edge
Computing remains a challenge (see Section 11.2.3).

3.5 Enabling Technologies

A number of enabling technologies have lately fostered the development of Edge
Computing. For example, encapsulating and moving parts of an application would
be difficult without lightweight virtualization standards. The most important of
those enabling technologies are summarized in this section.

3.5.1 Offloading Mechanisms

Computation offloading—sometimes also named cyber foraging [Bal+02; BF17]—
is the process of running an application or parts thereof outside the client device
[Kum+13; MB17] on a so-called surrogate. Surrogates are computing resources
that execute tasks on a client’s behalf [GC04]. The motivation for computation
offloading can be twofold. The first reason is related to the limited resources of
mobile devices. Either the device does not have enough resources, or the resources
would only be able to produce an inaccurate or unsatisfiable result. In many cases,
offloading to powerful surrogates can reduce the execution time [KYK12] of the
task. The other benefit of offloading is related to energy considerations, as pointed
out in Section 3.1. In this regard, computation offloading can help to save energy
on a mobile device and hence prolong its battery life, as demonstrated in [KL10;
LWX01]. Furthermore, the parallel execution of offloaded tasks can greatly im-
prove the system’s scalability [Kos+12]. Kumar et al. [Kum+13] and Sharifi et al.
[SKK12] provide extensive surveys on computation offloading.

3.5. Enabling Technologies 23

Offloading decisions. To perform offloading, it needs to be decided what to of-
fload, when to offload and where to offload to. What to offload is typically deter-
mined by a component—the application profiler—that automatically partitions the
applications into offloadable and non-offloadable parts [Cue+10; Chu+11]. The
parts that are to be offloaded can also be specified manually, e.g., through annota-
tions made by the developer. When and where to offload is decided by scheduling
mechanisms, e.g., as presented in [DH15]. It is worth mentioning that deciding if
something should be offloaded requires taking the overhead into account. Offload-
ing typically also means that the logic and in some cases the execution environ-
ment has to be transferred to the surrogates, which in turn consumes energy and
incurs additional latency. This is especially true for low-quality wireless connec-
tions. Therefore, the offloading decision should be based on a careful tradeoff and
ideally take contextual information (e.g., remaining battery, network conditions,
and QoS requirements) into account [Zho+17]. This is a well-studied optimiza-
tion problem. As an example, the work of Chen et al. [Che+16] focuses on the
offloading decision itself. Miettinen and Nurminen [MN10] analyze the critical fac-
tors for energy-efficient offloading. Many applications [Alt+16; Azi+17; Zha+17]
take into account the different characteristics of edge and cloud and hence, offload
delay-tolerant tasks to the cloud and time-critical tasks to the edge.

Offloading granularities and offloading targets. Offloading can be done in dif-
ferent granularities, e.g., entire virtual machines [Shi+13], threads [Gor+12], or
pieces of code [Cue+10]. Most of the existing approaches are aimed at MCC, i.e.,
the surrogates are located in the cloud. One notable exception is Paradrop [LWB16],
a platform for the deployment and orchestration of containerized applications on
WiFi access points. Golkarifard et al. [Gol+19] present a framework that supports
both cloud and edge offloading for wearable computing applications. As an alter-
native approach for offloading, we will present the concept of a microservice store
in Chapter 7.

3.5.2 Lightweight Virtualization

Offloading computations requires the packaging of application logic and/or execu-
tion environments into units that can be re-used across runtime instances. Com-
puting resources in Edge Computing typically feature multi-tenancy, i.e., they are
shared among multiple applications. Therefore, offloaded applications typically run
in virtualized environments. Virtualization serves two main purposes: flexibility
and isolation. However, virtualization entails a tradeoff that needs to be balanced
carefully in Edge Computing environments. On the one hand, virtualized environ-
ments should have little overhead in terms of management complexity and startup
time when comparing them to processes running on a shared operating system. On
the other hand, given the multi-tenant nature of virtualized environments, security
and privacy considerations dictate strong isolation between different applications
on the same edge device. The type of virtualization environment furthermore de-
termines which techniques for application migration can be used [Pul+18].

Virtual machines. The seminal paper that introduced cloudlets [Sat+09] envi-
sioned virtual machines (VMs) as the virtualization layer. However, virtual ma-
chines encapsulate entire operating systems, and while they provide good isolation,

24 Chapter 3. Characteristics of Edge Computing

they incur a large overhead in terms of size and startup time. Hence, in practice, two
viable virtualization technologies have emerged for Edge Computing [Mor+18a]:
containers and unikernels.

Container-based virtualization. Containers do not need a separate guest operat-
ing system for each application. Instead, this technology uses virtualization on the
operating system level. The operating system, its kernel, and libraries are shared
and, hence, the isolation is weaker compared to VMs. However, this weaker isola-
tion is traded for enhanced performance, e.g., by a lower startup time and smaller
size of application images. Ramalho and Neto [RN16] and Felter et al. [Fel+15]
have analyzed the performance difference between containers and VMs in detail,
outlining, e.g., the superior performance of containers with regards to disk and
network throughput. Using containers also simplifies the management of hardware
resources, since only one OS has to be maintained. A container engine provides a
format for bundling applications and an interface to control the execution of con-
tainerized applications. An important feature of container-based virtualization is
that components can be reused across different containers. Often, a so-called base
image is used, on top of which additional components and dependencies are loaded.
Consequently, the image of a containerized application is rather small, as both the
base image and additional dependencies are typically loaded upon the container’s
invocation. This allows shipping applications as smaller, portable units compared
to virtual machines. These are desirable properties that make containers a viable
virtualization technology for Edge Computing [PL15].

Besides access to virtualized resources like CPU or memory, the container engine
can also provide applications with network connectivity, both internally as well as
mapped to the operating system’s ports. From a technical perspective, Linux-based
container engines use two main features of the kernel to realize containerized appli-
cations: cgroups to control resource utilization and namespaces to provide isolation.
In practice, Docker4 has emerged as the de-facto standard container platform, al-
though others exist, e.g., LXC/LXD5, OpenVz6, Rocket7, and podman8. One advan-
tage of Docker is the easy syntax of the Dockerfile through which container images
are defined. In addition, powerful tools for the orchestration of Docker containers
exist, most notably Docker Swarm9 and Kubernetes10. Consequently, Docker has
been used in various approaches for implementing Edge Computing prototypes,
e.g., [LWB16; BZ17].

Unikernels. While recent efforts have been directed towards shrinking the size of
containers [Tha+18], unikernels are an even more lightweight approach to virtu-
alization than containers [Mad+13; MS13]. Contrary to containers, which share
all of the operating system’s libraries, unikernels can be considered an isolated
bootable image that can run on bare metal or a type-1 hypervisor. The differ-
ence to virtual machine images is that unikernels do not contain a complete op-
erating system and its libraries. Instead, only the parts required to execute the

4https://www.docker.com/ (accessed: 2019-08-09)
5https://linuxcontainers.org/ (accessed: 2019-08-09)
6https://openvz.org/ (accessed: 2019-08-09)
7https://coreos.com/rkt/ (accessed: 2019-08-09)
8https://podman.io/ (accessed: 2019-08-09)
9https://docker.com/products/orchestration (accessed: 2019-08-09)

10https://kubernetes.io/ (accessed: 2019-08-09)

3.5. Enabling Technologies 25

functionality are included, hence they are often referred to as library operating sys-
tems. Everything required to run the application is compiled into the unikernel’s
image. At runtime, unikernels run as a single-process and have no distinction be-
tween user space and kernel space. This architecture leads to a very fast boot time
and execution speed of unikernels, since many management functionalities such
as context switching, scheduling, and the management of virtual memory are non-
existent. Furthermore, their reduced attack surface (since no unused components
and libraries are included) makes them more secure. Due to their restrictions, e.g.,
no forking is supported, not every application can immediately be packed into a
unikernel. Some projects like Unik11 aim to automate unikernel compilation and
deployment, but in general, this is highly specific to the particular unikernel, and a
unified orchestration of unikernels remains challenging. The unikernel landscape is
rapidly evolving, with new projects constantly emerging. At the time of writing, Mi-
rageOS12, Rumprun13, OSv14, ClickOS15, and HalVM16 are among the most popular
and active unikernel projects. Some works have already applied unikernels to Edge
Computing environments. Cozzolino et al. [CDO17] have suggested unikernels for
edge offloading. Wu et al. [Wu+18] advocate the concept of a rich unikernel to
support various applications. As a proof-of-concept, the authors integrated Android
system libraries into a OSv unikernel.

3.5.3 Software-Defined Networking

Software-Defined Networking (SDN) has emerged from the paradigm of active net-
working [BCZ97]. The basic idea of SDN is to separate the control plane (i.e., the
part that determines the behavior of network functions) from the data plane (i.e.,
the entities that forward data) of the network [Kre+15]. SDN brings advantages
from the management and operation’s perspective of computer networks. For ex-
ample, the management of networks is simplified because devices do not have to
be configured independently and manually. Instead, configurations are performed
through a (logically) centralized control entity. Users can specify rules in a high-
level way, which are then translated by the controller and applied to network devices
via protocols like OpenFlow. These protocols can be used to perform management
functionalities in the network, such as defining flows or network slices.

Future potential of SDN. While SDN today is mainly used to control the forward-
ing of data, future implementations of the general concept can be a crucial enabler
for Edge Computing because of two main reasons. First, SDN abstracts away com-
plex management tasks from the user. For example, the control plane could be re-
sponsible for the placement and orchestration of services. Users would just specify
what service they request, and the decision where to instantiate it would be taken
care of by policies at the control plane. Similarly, the controller’s global view can
be leveraged for service discovery and to collect measurement data on the state of
the network. Second, the capability of SDN to dynamically reconfigure the network
is crucial in dynamic edge environments. For instance, these dynamics are related

11https://github.com/solo-io/unik (accessed: 2019-08-09)
12https://mirage.io/ (accessed: 2019-08-09)
13https://github.com/rumpkernel/rumprun (accessed: 2019-08-09)
14http://osv.io/ (accessed: 2019-08-09)
15http://cnp.neclab.eu/projects/clickos/ (accessed: 2019-08-09)
16https://github.com/GaloisInc/HaLVM (accessed: 2019-08-09)

26 Chapter 3. Characteristics of Edge Computing

to user mobility or changes in service demands. In case of necessary migrations,
e.g., due to intermittent connectivity to unreliable compute nodes, SDN-enabled
networks can push new flow rules to the network in order to redirect traffic. Fur-
thermore, SDN can also help to provide guarantees on the quality of service deliv-
ered by edge services, e.g., by reserving bandwidth on network links. Few works
have already applied some principles of SDN to edge environments. For example,
Heuschkel et al. [Heu+17] present a protocol to extend software-defined control
beyond the core network to the end devices. Bi et al. [Bi+18] show how user mo-
bility can be realized by decoupling mobility control and data forwarding through
SDN. An extensive overview of how Edge Computing can benefit from SDN can be
found in [BOE17].

3.5.4 Network Function Virtualization

Network Function Virtualization (NFV) is the concept of decoupling network func-
tions from the dedicated hardware appliances they are typically deployed on. In-
stead, the concept of NFV aims at deploying those functions as software compo-
nents atop of virtualized infrastructures. Examples for such network functions in-
clude deep packet inspection (DPI), firewalls, software-defined radios (SDR), and
network address translation (NAT), among others. Because all the functions are
built in software and run on virtualized hardware, making changes to them is very
fast and easy. One popular example of an NFV platform is ClickOS [Mar+14]. A
comprehensive survey about the current state of NFV can be found in [Mij+16].

Future potential of NFV. The main benefit of NFV for network operators and ser-
vice providers is to make the deployment and operation of their network more cost-
efficient [Haw+14]. Moving towards virtualized network functions is also interest-
ing in view of new network technologies. For example, Abdelwahab et al. [Abd+16]
show how NFV can help to fulfill the requirements of 5G networks. Hence, there is
a big interest in NFV as a business model.

At the same time, we can observe a kind of “chicken-or-egg problem” when ask-
ing the question of why no widespread edge infrastructure is available yet, e.g., at
the radio access network (RAN). Taking the example of a RAN, a network operator
currently might not see a business opportunity for Edge Computing because very
few novel applications that would benefit from it (and users willing to pay to use the
service) exist. Similarly, the lack of an Edge Computing infrastructure hinders the
development of such applications. NFV has the potential to break this vicious cycle
and become a crucial enabler for Edge Computing. Standardized server hardware
is already being deployed and virtualized by network operators. Therefore, the
foundation to run Edge Computing already is there, albeit for a different reason.
In addition, should other stakeholders, e.g., cloud infrastructure providers, make
increased efforts to enter the Edge Computing market, this competition is likely to
accelerate the adoption of Edge Computing in the NFV environment.

CHAPTER 4

Classification and Analysis of Applications

Chapter Outline
4.1 Methodology . 27

4.2 Application Survey . 31

4.3 Summary . 44

4.4 Conclusion and Requirements 48

This chapter reviews and analyzes the application landscape that revolves
around Edge Computing. First, in Section 4.1, we present a systematic methodol-
ogy for the analysis of applications. More specifically, we introduce four kinds of
components that applications are comprised of and suggest to classify applications
according to the notion of augmentation. As a second contribution, using the intro-
duced methodology and the characteristics of Edge Computing (see Chapter 3), we
take a detailed look at possible applications for Edge Computing. Section 4.2 an-
alyzes representative use cases for each category of applications and discusses the
mapping between an individual application’s characteristics and how well they can
be served by executing the application or parts thereof at the edge. This helps to
get a clearer picture of how the challenges differ for different application types and
where using Edge Computing can truly be beneficial. From the results of this sur-
vey, we summarize key observations in Section 4.3 and conclude with requirements
that will be addressed in the remainder of this thesis in Section 4.4.

4.1 Methodology

4.1.1 Components of Edge Applications

Applications that make use of Edge Computing do so by offloading data or computa-
tions to resources at the edge. In addition to this general distinction, we can further-
more take a data-centric perspective and investigate how data is transformed and

27

28 Chapter 4. Classification and Analysis of Applications

processed. Based on these two aspects, we define the following four components
that applications can use: (i) data consolidation, (ii) filtering & pre-processing,
(iii) data storage & retrieval, and (iv) computation offloading. They are visualized
in Figure 4.1. While the first two concern the flow of data and describe how data
is transformed, the latter two indicate what happens with the data. Those compo-
nents allow to cover a wide range of applications for which Edge Computing is rel-
evant, e.g., for overcoming devices’ limitations (through offloading), enabling col-
laboration (through sharing of data), or for coping with high-volume data streams
(through consolidation and filtering). Besides applications being distributed, the
components are also subject to distribution themselves, which entails further chal-
lenges, e.g., where to place them. Concrete implementations of the components
may have different levels of complexity, and applications can combine multiple of
those components.

(a) Data consolidation (b) Filtering & pre-processing

(c) Computation offloading (d) Data storage & retrieval

FIGURE 4.1: APPLICATION COMPONENTS†

4.1.1.a Data consolidation

Data consolidation combines data from multiple sources and reduces it to a smaller,
often more meaningful joint representation. As an example, consolidating data in
the context of complex event processing (CEP) [CM12] has the potential to save
bandwidth if consolidation operations are placed at the network edge before the
streams of data are transferred further [SS13; Gov+14]. One example of data con-
solidation is averaging sensor data, e.g., providing an average temperature reading
over a certain time.

Executing data consolidation tasks at the edge instead of in the cloud has the po-

4.1. Methodology 29

tential to greatly reduce end-to-end latency and required bandwidth. The amount
of bandwidth savings depends not only on the relation between the input band-
width and the output bandwidth of the data consolidation task but also on the
task’s location in the network. For example, averaging sensor data on-site might
require orders of magnitude less overall bandwidth than averaging the data in the
cloud. Furthermore, tight latency requirements might make consolidation in the
cloud infeasible in some cases.

4.1.1.b Filtering & pre-processing

The purpose of this component is twofold: discarding irrelevant data (data filter-
ing) and transforming the data or its representation (pre-processing). Since not
all data is equally important, bandwidth savings can be achieved by discarding ir-
relevant data before it is transmitted for further processing. A simple example is
thresholding of temperature readings in an application where an alarm should be
raised when a certain value is exceeded. In such an application, temperature read-
ings are irrelevant as long as they are within the normal range and thus need not be
transmitted. Besides saving bandwidth, reducing data locally can also help to save
energy and reduce local storage needs [Gau+13]. In pre-processing, data is trans-
formed from one representation to another. Besides discarding data, which could
be interpreted as a special case of such a transformation, other examples are the
aggregation of data streams over time, data compression, data alteration, or bridg-
ing between formats. For instance, real-time video analysis, a likely “killer app” for
Edge Computing [Ana+17; LQB18], has the potential to save vast amounts of band-
width by only forwarding results of the analysis, e.g., the number of objects in the
frame, instead of entire video streams. To give a practical example, a video stream
may be encoded to a lower bitrate or faces in the video stream could be blurred
for privacy reasons. Powers et al. [Pow+15] demonstrate the use of cloudlets to
pre-process data for a face recognition application. Both of these aspects can save
bandwidth, depending on the ratio of data discarded and how much data is re-
duced by the pre-processing. Furthermore, in the case of time-critical data stream
processing applications, distributing such operations entirely at the edge can reduce
end-to-end latencies substantially [Nar+19; Car+15].

4.1.1.c Computation offloading

Computation offloading is the process of executing a task outside the client device
on a remote resource. This task is often resource-intensive. The client transfers the
input data and in some cases the code and execution environment and retrieves the
result. For example, offloading computation-intensive neural networks [Li+16a;
Hu+17; LZC18] or rendering operations [Shi+19] from a mobile device could de-
crease the execution time and save battery energy. We refer the reader to Sec-
tion 3.5.1 for a more detailed description of this concept.

4.1.1.d Data storage & retrieval

Applications might want to store data outside of the device for several reasons. First,
additional external storage helps to overcome the device’s storage limitations. Sec-
ond, data often needs to be shared across different users and applications. When-
ever data is only of local relevance, leveraging the edge, i.e., storing the data on

30 Chapter 4. Classification and Analysis of Applications

close-by devices, is beneficial for access latencies and bandwidth utilization in the
network. Often, this data will be contextual data and short-lived information cap-
tured by the user. Storage can either be ephemeral, i.e., short-lived, or permanent.
In the latter case and if we consider unreliable devices, replication is required. If
data is replicated, the client needs to make a decision from where to retrieve it,
ideally considering the abovementioned metrics of latency and bandwidth. Sec-
tion 4.2.1.c presents several examples of approaches related to data storage and
retrieval.

4.1.2 Classification Scheme

TAXI

FIGURE 4.2: CATEGORIES OF APPLICATIONS†

To categorize the vast amount of proposed applications for Edge Computing, we
classify them into four categories. Contrary to previous works whose classifications
are rather enumerative, our classification starts from the very purpose of Edge Com-
puting, i.e., to bring data and computations closer to where data is generated and
results of the computations are needed. To do so, we define four categories around
the notion of augmentation, as depicted in Figure 4.2. We use the term augmen-
tation to denote the intertwining of the physical world with the digital world. At
the top level, a common categorization of the physical world divides it into animate
and inanimate objects. Looking at their interaction with the digital world, the abil-
ity to actively and consciously influence the latter is largely restricted to a subset of
the animate world, i.e., humans. Therefore, our classification starts from the dis-
tinction between humans and things. For humans, we further distinguish between
separate (mobile) devices used and/or carried by the user (mobile device augmen-
tation, Section 4.2.1) and devices that are interwoven to a higher degree with the
user, e.g., devices that are worn or connected and affect the user’s body function
(human augmentation, Section 4.2.4). For things, following the widespread IoT ter-
minology, Section 4.2.3 defines one category as IoT device augmentation. However,
we also want to stress the benefits of Edge Computing in enhancing the smartness
of public spaces and larger environments as opposed to single devices in closed
ownership. Therefore, we also define the category of infrastructure augmentation
(Section 4.2.2). We acknowledge that some use cases may be considered to belong

4.2. Application Survey 31

to more than one category; however, we share this issue with the vast majority of
categorizations in every domain. Nevertheless, we argue that our classification has
the advantage of being simple, inclusive, and at the same time open to fit future
applications.

4.2 Application Survey

For each of the categories defined in Section 4.1.2, we describe representative use
cases and analyze the benefits of Edge Computing with regards to the four advan-
tages as defined in Section 3.1. Note that regarding energy-saving and energy effi-
ciency, we only consider the potential energy saving and hence battery life prolon-
gation of end devices as this is often more relevant than the total energy footprint.
Energy savings in network equipment are sufficiently represented by the bandwidth
criterion.

We do not restrict our analysis to papers where Edge Computing has been pro-
posed or that are currently associated with Edge Computing use cases but include
others for which at least some benefits of Edge Computing apply. Furthermore,
following our taxonomy discussed in Section 2.1, we also include literature that
relates to Fog Computing. This helps to get a comprehensive overview of potential
use cases for Edge Computing. At the end of this section, we summarize our find-
ings for the most pertinent use cases. Those references that appear in Table 4.1 are
marked with an asterisk (*) throughout the following subsections.

4.2.1 Mobile Device Augmentation

The applications outlined in this section are specifically targeted at the consumer’s
mobile devices, such as smartphones, tablets, or head-mounted devices. Specif-
ically, we look into mobile gaming (Section 4.2.1.a) and emerging virtual/aug-
mented reality applications (Section 4.2.1.b). In addition, new applications and
usage patterns require appropriate strategies for data storage and caching (Sec-
tion 4.2.1.c).

4.2.1.a Mobile gaming

In gaming, we observe the trend towards (i) more mobile games (i.e., games played
on a connected handheld device), (ii) more games that interact with the player’s en-
vironment or other players in proximity, and (iii) business and deployment models
based on Gaming as a Service (GaaS). As described in [CCL14], GaaS is the concept
of providing scalability and overcoming hardware limitations through modulariza-
tion of the game. For example, certain functionality (e.g., rendering) is migrated
from the mobile device and offloaded to a server. Functionalities like rendering are
computationally intensive, and hence, offloading them can significantly improve
battery life.

Most games are highly interactive and, thus, players expect crisp responsiveness.
The responsiveness is influenced by the computation and communication time of
the offloaded components and—in some cases—by the latency to other players.
Pantel and Wolf [PW02] claim that depending on the type of game, only 50 ms–
100 ms of delay is tolerable. As analyzed by Choy et al. [Cho+12], the cloud will be
unable to meet the latency requirements of gaming applications (assuming a target

32 Chapter 4. Classification and Analysis of Applications

latency of 80 ms). To solve this issue, the authors propose to extend the cloud
infrastructure with local content delivery servers to serve users’ demands. This
has led big companies to extend their data centers towards the edge. Plumb and
Stutsman [PS18]* demonstrate how exploiting Google’s edge network can reduce
the latency for massively multiplayer online games. Specifically, they define an area
of interest latency as the latency between players that interact in the virtual world.
The authors report an improved mean latency from 52 ms to 39 ms and for the 99th

percentile an improvement from 110 ms to 91 ms. As shown before, this can make
the difference between an enjoyable experience and an unplayable game.

For these reasons, extending the infrastructure for mobile gaming to the edge
makes sense. In addition, tasks like rendering typically require only small data as
input (e.g., the user’s position, field of view or current action) while the size of the
returned data (in this example the rendered object) is much larger. This observation
matches the asymmetric down- and uplink bandwidth that end users today have in
cellular networks. Messaoudi et al. [MKB18b]* present a general framework for
offloading parts of a modularized game engine. Lin and Shen [LS17]* extend cloud
gaming with fog nodes that are responsible for rendering game videos and stream-
ing them to nearby players. Similarly, the work of Kämäräinen et al. [Käm+14]
supports the deployment of game services in hybrid (public, enterprise, private)
cloud infrastructures. Using local processing, they were able to almost halve the
delay. Furthermore, their results indicate that connecting to a cloud via WiFi is less
detrimental to the device’s energy consumption compared to 4G cellular networks.

Cai et al. [Cai+18]* investigate a scenario in which neighboring players co-
operate in a game. They advocate cloudlets in the vicinity of players to reduce
bandwidth and latency bottlenecks, and also consider the energy dimension, both
for the mobile device and the overall energy cost for data transmission. In many
games, players are mobile, e.g., when the game requires them to interact with their
environment or visit different locations. Hence, the issue of migrating offloaded
parts of the game arises. Braun et al. [Bra+17b] propose an application-level mi-
gration technique for latency-sensitive gaming applications. The server is trans-
parently live-migrated during gameplay. The authors argue that the advent of 5G
networking will provide ultra-low latency and high-bandwidth to mobile devices.
Hence, it would make sense to locate edge game servers at those locations.

4.2.1.b Augmented reality and virtual reality

Augmented reality (AR) and virtual reality (VR) have gained enormous traction due
to the advent of new consumer devices such as the Microsoft HoloLens or HTC Vive.
In augmented reality, virtual objects are integrated into the environment [Azu97].
Augmented reality applications extend the user’s real-world view by inserting vir-
tual objects into the environment, related to one’s context and movement. Virtual
reality (VR) is defined by creating a sense of presence in simulated environments
[Ste92]. Both variants are typically interfaced to the user via a head-mounted dis-
play (HMD). Applications leveraging VR and AR mainly fall into the categories of
information (e.g., in retail [Cho+16] or for tourist guidance [Tal+17]), education
[Wu+13], and entertainment [Tho12]. Common to all of them is that computation-
ally heavy tasks need to be carried out in order to render and understand a scene.

AR/VR applications are subject to stringent real-time demands on their respon-

4.2. Application Survey 33

siveness. For head-tracked VR, it has been shown that the JND1 for latency discrim-
ination is 15 ms [Man+04]. Especially in VR, motion sickness can occur if the delay
between tracking the movement and rendering the scene exceeds this value.

Because high-framerate 3D rendering is computationally demanding, many
headsets carry out those tasks on a standalone computer, connected to the head-
set through a cable. Removing this cable is desirable for the user experience, but
challenging due to the high data rates a wireless channel must guarantee. Some
attempts have been made by using new wireless communication technologies such
as mmWave [Aba+] or by partitioning the computations between the HMD and the
rendering server [CCK18]. The latter is required because computational capacity
(especially GPU) remains limited on end devices. At the same time, the stringent
latency requirements prohibit offloading to the cloud. Hence, the challenge is to
design good offloading strategies to nearby rendering servers while coping with
current wireless communication technologies. Braud et al. [Bra+17a] have ana-
lyzed these challenges with a focus on mobile users. Furthermore, as outlined in
[Tri+19], battery life and latency form a tradeoff.

Despite these challenges, a few solutions to leverage Edge Computing in AR and
VR have been proposed. Elbamby et al. [Elb+18] have envisioned a combination of
Edge Computing for computation and mmWave for communication as a crucial en-
abler for wireless VR. Lai et al. [Lai+17]* have presented the idea of a cooperative
renderer. The authors base their system on the observation that less-predictable
scene updates are typically more lightweight, and therefore, those are rendered at
the edge. For highly predictable scene changes, pre-rendered frames are fetched
from nearby locations. In addition, compression and panoramic frames are used
to reduce the load on the wireless link. Similarly, Shi et al. [Shi+19]* have pre-
sented a rendering scheme that saves more than 80 % of bandwidth and therefore
enables the delivery of VR content over 4G wireless links. Liu et al. [LH18] have
presented DARE, a novel network protocol that enables mobile users to dynami-
cally change their AR configuration. Specifically, it adapts to changes in network
conditions and load on edge nodes—both crucial in dynamic edge environments.
Tirelli et al. [Tri+19] have used an approach based on NFV. They have developed
a framework for live video augmentation by extracting and injecting video streams
from or into network flows.

Besides partitioning workload only between the end device and one edge node,
some workloads benefit from distributed processing across several cloudlets. For ex-
ample, Bohez et al. [Boh+15]* reconstruct 3D maps from the depth cameras of AR
headsets. They do this by partitioning sub-models across geographically distributed
cloudlets.

Gaming with VR/AR is a popular application scenario, and due to its specific
characteristics, we review existing work independent from Section 4.2.1.a. Viita-
nen et al. [Vii+18] have presented a rendering scheme for real-time VR gaming
that saves energy and computational load on the end device. The rendered views
are encoded as HEVC2 frames and transmitted based on the user’s field of vision. In
[Zha+17], the authors have explored the scalability issue of massively multiplayer
games and present a hybrid approach in which changes in the local view of a player
are processed at the edge, while global game updates are performed in the cloud.
In addition, colocating multiple players that share a similar view on the same edge

1just noticeable difference
2High Efficiency Video Coding

34 Chapter 4. Classification and Analysis of Applications

node increases the efficiency of the proposed system. Zao et al. [Zao+14] have
developed an AR game with a brain-computer-interface that processes EEG3 brain
activity in real-time. Classifying those readings into game actions is a computation-
ally intensive task. The authors use a combination of Edge Computing and Cloud
Computing for this. While the classification is done at the edge, the underlying
models in the cloud are continuously adapted according to the sensor readings.

In summary, AR and VR applications are two of the most relevant use cases for
Edge Computing, as they combine four important characteristics that benefit from
edge deployments: strict constraints on the latency, high-bandwidth data, compu-
tationally intensive tasks, and battery-powered end devices.

4.2.1.c Data storage, content delivery, and caching

Virtually all connected applications need to store or retrieve data from outside the
client device. At the beginning of this section, this was defined as one of the compo-
nents that applications use. We now describe in detail the possible types of storage
and caching services that can be offered at the edge.

Content Delivery Networks (CDN) [Dil+02] distribute content caches across
data centers in different geographic regions to provide highly available and per-
formant content retrieval for users. Ericsson forecasted back in 2013 that in 2019,
50 % of mobile traffic would be video traffic [Eri13]. Hence, content delivery net-
works today to a large extent serve video traffic [MJ16]. This demand for video not
only means users have high expectations for the service quality, but also that large-
volume data is a huge burden for infrastructure providers and hence, an important
incentive to place caches within the access network [Bec+14]. Ahlehagh and Dey
[AD14]* have proposed both reactive and proactive caching strategies for video
content at the radio access network. Bastug et al. [BBD14] have investigated the
role of proactive caching in 5G networks. Another example is the retrieval of web-
sites [Zhu+13]*. Zeydan et al. have [Zey+16] proposed proactive content caching
based on content popularity in 5G networks. Approaches like [App+10] assume
a global knowledge of the content popularity for each location. Because edge en-
vironments typically feature user mobility, these approaches have limitations with
regards to their scalability. A solution to this might be collaborative approaches as
presented in [LYS16]*, where base stations collaborate in replicating content to im-
prove the overall cache hit ratio. Tran et al. [Tra+17]* have presented a strategy
for collaborative caching and processing of on-demand video streams.

Up until today, little research has linked content storage and caching to the
domain of Edge Computing. Drolia et al. [Dro+17] have presented Cachier, a
caching system for image recognition applications. It balances the load between the
edge and the cloud and exploits the spatio-temporal properties of requests. Psaras
et al. [Psa+18]* have advocated the placement of local storage on WiFi access
points to buffer IoT data prior to cloud synchronization. Lujic et al. [LMB17]* have
proposed a storage management framework for edge analytics. The goal of the
framework is to balance the quantity of stored data and the resulting quality of the
data analytics, given limited storage capacities at the edge. Such caches can also be
used for the distribution of mobile apps and app updates [Bha+15b]*,[Bha+15a]*.

As end devices generate more data, the path of data dissemination changes to a
“Reverse CDN” [Sch+17]*, [MSM17]*, i.e., the decision is where to store data gener-

3Electroencephalography

4.2. Application Survey 35

ated by those end devices in the network. This decision depends on where the data
is to be used and shared. Therefore, contextual information, such as the user’s lo-
cation is useful to make this decision. For example, we can imagine sharing content
from large-scale events or tourist sites. In Chapter 9, we will present a framework
that uses contextual information of the user to make storage decisions. Simoens et
al. [Sim+13] have presented GigaSight, a framework for the decentralized collec-
tion of videos through cloudlets. Before the videos are indexed and made available,
cloudlets remove privacy-sensitive information from the video. The authors have
conducted experiments, measuring the throughput and energy consumption and,
based on the results, modeled a tradeoff for the allocation of resources between the
cloudlets performing the different computation steps.

Compared to low-latency processing tasks, the benefits of Edge Computing for
storage and caching are less striking and require careful decision-making. Further-
more, using edge nodes for storage can raise the question of resilience in view of
their inferior reliability [MRS19] compared to large data centers. However, in cases
where data has to be transferred away from end devices, e.g., because it is to be
shared, and if that data is only relevant in a certain (geographic) area, Edge Com-
puting can save bandwidth if the data is kept in proximity. As an example, Hao et
al. have presented EdgeCourier [Hao+17]*, a framework for live document syn-
chronization. The authors have demonstrated the reduction in network bandwidth
usage by performing incremental synchronization at edge nodes. Another example
is the work of Hu et al. on face recognition [Hu+17]. They have observed that
only a subset of biometric features is relevant to identify a face. The paper suggests
extracting those features at the cloud and retaining only those at the edge necessary
to perform the recognition.

As soon as personal user data is involved, privacy and data security become rel-
evant. The Databox project [Cha+15]*, [Mor+16]* aims at providing a personal
data management framework. It enables individuals to manage their personal data
and make that data available to others, while retaining control over its usage. Most
importantly and in contrast to today’s approaches, data is not handed over to third
parties. Instead, access and processing is mediated through the Databox. The au-
thors envision a distributed system of personal Databoxes, hosted on a variety of
devices, e.g., wireless gateways, lamp posts, and cars. The Databox consists of
several components that are logically separated and can run on different physical
devices. Access to different sources of data is also logically separated to provide
additional security. The project is a good example of how edge infrastructure can
help to preserve data security and privacy. However, as noted in [Per+17b]*, sev-
eral challenges remain, such as capturing one’s privacy preferences, implementing
shared ownership of data, or how to approach risk-benefit negotiations for sharing
data.

4.2.2 Infrastructure Augmentation

In the following, we refer to infrastructure as basic services and facilities that we
build our lives upon. This basic infrastructure encompasses everything from our
electrical grid (see Section 4.2.2.a) up to emergency services (see Section 4.2.2.d).
This infrastructure is especially important and challenging in urban areas as the
trend of growing urbanization brings new challenges, such as traffic, pollution, and
safety [LR17]. The term smart cities [Sch+11] has been used to describe concepts
that use information technology to augment infrastructure in urban areas. Schlei-

36 Chapter 4. Classification and Analysis of Applications

cher et al. [Sch+16b] define a smart city as a reactive system that makes decisions
based on massive amounts of data. Smart cities connect people and objects in or-
der to create services that enhance the quality of life for citizens of urban envi-
ronments [Zhe+14a]. Furthermore, monitoring and large-scale data analysis can
provide valuable information for municipalities and policymakers, e.g., to plan traf-
fic and transportation (see Section 4.2.2.b). The raw data is collected from sensors
that are deployed in the environment. Besides static deployments, humans can also
be incentivized to serve as data providers [Sch+12], e.g., by providing sensor data
through their phones [CFB14]. One application domain where this approach has
proven useful is in monitoring the environment (see Section 4.2.2.c).

Previous works in the domain of smart cities have proposed to integrate the
captured information through Cloud Computing [Heo+14; PLM17]. However, they
have not considered the potential benefits of using nearby cloudlets, especially for
analytics on high-volume data. A prominent example are video streams from cam-
eras that are ubiquitously present in today’s cities. While tolerable delays for smart
city applications vary greatly [Zan+14], the mere number of sensors will prevent
cloud-based solutions from scaling. Perera et al. [Per+17a] have further surveyed
different types of smart city applications that benefit from edge deployments, with
a focus on the communication between devices.

4.2.2.a Smart grids

Energy grids are currently in a state of transformation towards so-called smart grids,
driven by ecological, economical and political goals. Two important characteristics
of a smart grid are (i) information and communication technology is embedded
into the energy grid, (ii) its decentralized nature (in contrast to today’s strictly hi-
erarchical organization), and (iii) a shift towards prosumers that both consume and
produce energy. A smart grid is envisioned to support a distributively organized
control structure instead of being one large energy grid with central control across
all tiers. In particular, this structure is envisioned to consist of multiple cells, which
can be controlled individually [How+17].

As a way to realize the next evolutionary step of cellular energy grids, a holonic
approach has been suggested [NB12]. Holons represent entities in a system that
are simultaneously a part and a whole. Consequently, a hierarchically organized
system structure (called Holarchy) emerges, where on different levels, holons exist
that encompass other holons, while being part of higher-level holons themselves.

Implementing a Holarchy is challenging, given that it requires components for
monitoring and automated control [Fre+13]*. To establish such a concept, Edge
Computing is a suitable paradigm as it supports data aggregation and filtering,
which are both essential to realize the concept of holons. For instance, local con-
sumers can optimize the control of the appliances in their smart homes to reduce
their electricity bills [AMM15]. Simultaneously, this goal may conflict with the pro-
cess of balancing demand and supply in the overall grid. These problems can now
be addressed either locally, using the local controllers responsible for managing in-
dividual holons, or the higher level holons can address the issue as they have a
larger view on the network.

The decision-making in smart grids must solve complex optimization problems,
like optimally controlling distributed energy sources. One way to tackle the com-
plexity of these problems is to reduce the problem size and, consequently, speed up
the optimization process. Edge Computing devices can be used as local controllers

4.2. Application Survey 37

for holons, which are capable of executing optimization algorithms. Examples of
suitable algorithms are presented in [PSM10]*. Moreover, such optimization tasks
need to be performed quickly, as demand and supply deviations in the grid can
contribute to the destabilization of the whole energy grid. Edge Computing de-
vices facilitate low-latency communication and hence, using Edge Computing, these
problems can quickly be addressed locally, without the need to send the necessary
information to a cloud service or a central control center.

Although not obvious at first glance, smart grids contain sensitive data with re-
gard to one’s privacy. For example, the authors of [Rei+12] have shown that the
readings from smart meters can reveal the individual home appliances by analyzing
the aggregated smart meter readings. Edge Computing devices in combination with
smart energy storage technology can address this problem by scheduling the charg-
ing of the storage and the consumption of the appliances in a way such that the
devices only use the electricity that is currently stored in the home. Consequently,
the power consumption profile of the house itself appears to the outside only as the
charging behavior of the local energy storage device.

4.2.2.b Smart transportation & connected cars

In big cities, optimizing traffic conditions is a crucial task as it results in a tremen-
dous impact on one’s quality of life. Like in other types of smart city applications,
many primary sensors for traffic-related applications are cameras, whose video
streams require further processing. For example, we can think of a smart traffic
light that adapts its signal cycles to the actual traffic conditions in certain lanes of
the intersection [Gha+16]*. While energy is not an issue in these scenarios (since
sensors are fixed deployments and connected to a permanent power source), this
use case requires complex tasks like object recognition (to identify cars) and track-
ing that might not be feasible given weak built-in hardware. Analysis of live feeds
can also be used to detect traffic anomalies [Ana+17] or to recognize license plates
[Yi+17]. The traffic light example can also be linked to emergency response use
cases, e.g., to help making way for an ambulance by setting traffic lights to free up
the route and warn others about the approaching vehicle [Nun+15]*. In the latter
use case, time criticality clearly becomes more important. This is also the case for
the detection of immediate road hazards, e.g., as shown in [CDO19]*.

Long-term analysis of urban data can be used to detect and improve flawed
urban planning or to identify areas where dangerous situations regularly occur
[Zhe+11]*,[Sat+17]*. In these use cases, the long-term analysis would most likely
be carried out in the cloud due to the larger amount of available resources. How-
ever, we argue that data collection on such a big scale would not be possible without
Edge Computing, due to necessary pre-processing steps (e.g., encoding a video to
a lower bitrate or aggregating measurements). Qi et al. [QKB17]* have intro-
duced an Edge Computing platform using on-board computers on public transport
vehicles. The platform collects data (e.g., by intercepting WiFi probe packets from
phones) to gain insights that help public transport operators to devise better plans
(e.g., by identifying popular stations and assessing vehicle occupancy). Such infor-
mation can be sensitive as it allows to identify and track individuals. Hence, in this
case, the edge infrastructure could also be in charge of performing the anonymiza-
tion of sensitive data. Besides static planning, this high-volume data could also be
used for real-time updates, e.g., to provide passengers with predicted arrival times.
This data could be distributed to edge nodes at the relevant location (e.g., to the

38 Chapter 4. Classification and Analysis of Applications

corresponding WiFi hotspots at a stop). The location-awareness of edge nodes can
also be used for applications like toll collection [Aba+15] or finding parking spaces
[Vil+15b; Awa+19].

Besides improvements in the planning of city traffic, we see a trend towards
vehicles themselves being equipped with more sensing and computing capabilities.
In many cases, these components are not isolated but transform the vehicle into a
connected car that can interact with its environment and other vehicles. Such cars
can form vehicular ad hoc networks (VANET) [HL08] that communicate with each
other or through some close-by infrastructure—often termed roadside unit (RSU).
Besides RSU, UAVs have also been proposed as a means to relay communications
between cars and/or infrastructure [Men+17]. Datta et al. [DBH15]* have pre-
sented an infrastructure with a Fog Computing layer, located at RSUs and M2M-
gateways. The type of data and its importance varies in such networks [Sch+08],
from simple information services (e.g., information about current traffic conditions)
to critical, safety-related events (e.g., warnings about emergency situations or sud-
den breaking of cars ahead). An example of the latter is the work of Cozzolino
et al. [CDO19]* that uses an edge infrastructure for black ice road fingerprinting.
Liu et al. [Liu+18] have demonstrated that complex tasks, such as recognizing
attacks in ridesharing services can be done with little energy impact on the end
device. Edge Computing can also be an important enabler for autonomous driv-
ing, e.g., by disseminating data from RSUs to vehicles [Yua+18]*, or by processing
information like point clouds captured by LIDAR sensors [Qiu+18]*. Besides such
latency-critical and compute-intensive tasks, edge capabilities can also be used for
early data aggregation to save core network bandwidth. In this domain, Lochert
et al. [Loc+08] have presented an aggregation scheme for VANET traffic informa-
tion. As outlined in [BOE17], strong security mechanisms need to be in place if
edge nodes are involved in the control of vehicles in order to make such systems re-
silient against attacks. Raya and Hubaux [RH05] have provided a detailed analysis
of threats and security architectures in VANETs.

4.2.2.c Environmental monitoring & waste management

Pollution is one of the main problems in growing urban areas, with drastic im-
pacts on people’s health. As of today, many kinds of pollution are only measured at
very few locations and/or estimated via models based on historical data [ZLH13]*,
[Zhe+14b]*. Hence, they often fail to provide an accurate and actionable view
on current situations. However, accurate, real-time information is crucial, both for
policymakers and citizens to make informed decisions (e.g., for patients with respi-
ratory diseases or for decisions to restrict traffic). Dutta et al. [Dut+17]* present
AirSense, a crowdsensing-based air quality monitoring system. Especially for such
opportunistic sensing campaigns, where the location of the data is unknown a pri-
ori and constantly changing, the deployment of Edge Computing resources is both
beneficial (because the data is typically high-volume and can be aggregated locally)
and challenging (because of the geographic dispersion and the users’ mobility).

While environmental data, in general, has a rather low rate of data generation
[SBH16], scalability remains an issue [MAŽ18]*. Edge Computing can ensure the
scalability of a large-scale sensing system by processing the data close-by and keep-
ing the results within the sensing area. Aggregated or coarse-grained data (e.g.,
by reducing the temporal resolution) can be sent to the cloud, while the raw sen-
sor readings are processed at the edge. Aazam et al. [AH14] have advocated data

4.2. Application Survey 39

trimming to reduce unnecessary transfers to the cloud by using a smart gateway
that sensing nodes are connected to. Edge infrastructures have also been used to
opportunistically deploy different sensing tasks [Tsa+17]. Zheng et al. [Zha+18b]
have presented an allocation scheme for sensing tasks on Edge Computing nodes.
The authors outline the benefits of an edge deployment w.r.t scalability, bandwidth
requirements, and better utilization of edge nodes’ computing power.

Similar to air pollution, noise pollution is a big problem with adverse effects on
people’s health. Maisonneuve et al. [Mai+09]* and Schweizer et al. [Sch+12]* have
proposed deployments in which citizens measure noise through their mobile phones
and upload the measurements to a cloud-based service for access and analytics. Be-
sides the potential benefits of edge deployments w.r.t. latency and bandwidth, we
also need to consider the privacy aspect. Whenever data is collected by volunteers,
privacy has to be guaranteed, otherwise people might not be willing to participate
in sensing campaigns. Measurements must inherently contain the users’ locations,
and hence, this would allow tracking user locations. By processing such data at
the edge, data can be anonymized early or, alternatively, noise can be introduced
into the raw data, such that it does not impact the results, but cannot be linked
back to an individual. Here, the distributed nature of an Edge Computing infra-
structure itself can be exploited. Marjanović et al. [MAŽ18] have demonstrated
how partitioning data and distributing its processing can help in reducing privacy
threats.

Waste management is a complex process in today’s cities and includes the collec-
tion, transportation, processing, and disposal of waste. Optimizing these processes
can save a city tremendous amounts of money and resources. One way is to optimize
the transport routes of garbage collection trucks. Normally, these operate at fixed
schedules, as no real-time information about filling levels of waste containers is
available [Nuo+06]. Sensors mounted on trash containers could report their filling
levels and infer if they need emptying. Based on aggregated data from a neighbor-
hood, the garbage trucks’ routes can be optimized. Furthermore, municipalities can
provision different sizes of garbage trucks in order to optimize the collection process
[AZM15]*. Cloud-based solutions have been proposed [Per+14b]*, [Aaz+16]*,
[Med+15]*, however, aggregating the sensor readings at the edge would save band-
width. This becomes more important if data is annotated with photos or voice
messages, as suggested in [Med+15]. Latency and privacy, however, are less of a
concern in this use case.

4.2.2.d Emergency response & public safety

Detecting emergency situations can be done by inferring events from sensor sources.
As soon as an emergency is detected, first responders need to be alerted and directed
to the scene. To do so, platforms provide situational awareness and connect first
responders to the required data sources. Chung et al. [Chu+13]* have presented
a cloud-based platform, while Aazam and Huh [AH15]* have extended this idea to
incorporate an intermediate fog layer that is capable of pre-processing the data and
overcoming delay problems. Depending on the type of incident, the appropriate
emergency departments are notified. Mobile base stations can furthermore serve to
notify citizens about a threat. For example, Sapienza et al. [Sap+16] outline a use
case where a fire is detected based on sensor readings and video analysis, and this
information is forwarded to car navigation systems in order to alert people.

A distributed infrastructure of edge devices can furthermore be leveraged as an

40 Chapter 4. Classification and Analysis of Applications

emergency infrastructure in case of disasters. In case of a breakdown of the com-
munication infrastructure, cloudlets hosted on private devices like routers can act
as emergency devices, providing both computation and communication capabilities
[Meu+17c]*. Satyanarayanan et al. [Sat+13]* outline a potential use case for such
emergency cloudlets in disaster recovery, in which responders take photographs that
need to be stitched together in order to obtain a complete overview of the area.

Efforts to increase public safety (e.g., by either preventing or quickly detecting
crimes) mostly rely on surveillance. In many cases, the raw data consists of video
streams, which are then analyzed. Canzian et al. [CS15] have presented a hierar-
chical classifier system for surveillance applications. As the authors point out, the
characteristics of the tasks—distributed sources and tasks as well as a high compu-
tational complexity—make it necessary to leverage distributed and heterogeneous
processing nodes. This definition perfectly reflects the Edge Computing landscape.
Chen et al. [Che+17a]* have presented a system for real-time surveillance and
tracking of vehicles to detect speeding using a drone. Similarly, Xu et al. [XGR18]
use a geo-distributed Fog Computing infrastructure for vehicle tracking. Mihale-
Wilson et al. [MFH19] have investigated the protective effect of street lamps if they
are augmented with functionalities such as video surveillance and gunshot detec-
tion via microphones. Their results suggest an increase in safety in areas where
such lamps were installed. Just-in-time indexing of video streams across several
cloudlets has been demonstrated in [Sat+17]*. A practical use case for just-in-time
video indexing could be the search for a missing person.

Because all these use cases involve multiple streams of high-volume data and
heavy computations, edge deployments are beneficial in terms of latency and band-
width. Besides offloading computations, data pre-processing is also relevant to
some security-related applications. For example, Stojmenovic [Sto12]* has pro-
posed to partition tasks for biometric identification between the mobile device and
the cloud.

In all those use cases—especially when video streams are involved—the citi-
zen’s privacy is exposed, and personal information is analyzed. Contrary to other
use cases, the privacy-critical information is not incidentally contained in the raw
data, but it is the reason for capturing it in the first place. Hence, the positive im-
pact of Edge Computing in this application domain is limited. At the very best, we
could envision enforcing policies to delete personal information once it has been
processed by a trusted edge node.

4.2.3 IoT Device Augmentation

The IoT refers to connected objects that are able to interact with each other and
hence, extend the Internet to the physical world [AIM10]. Originally closely tied
to RFID4 technology [Wan06], today the IoT encompasses all kinds of sensors, ma-
chines, and appliances. An extensive survey about the IoT and its enabling tech-
nologies can be found in [AlF+15]. The data volume and latency requirements of
future IoT devices will likely be challenging to transfer and process at central clouds
[PM17; San+14]. In this section, we focus on IoT deployments in three settings:
homes and buildings (Section 4.2.3.a), industrial applications (Section 4.2.3.b),
and agriculture and farming (Section 4.2.3.c).

4Radio Frequency Identification

4.2. Application Survey 41

4.2.3.a Smart home & smart building

The terms smart home and smart building describe the concept of collecting data
within a building and using it to automate and optimize various aspects of the
building. The IoT offers great potential to lower energy/water consumption and in-
crease security and comfort through coordinated management of HVAC5 systems,
lighting, electrical outlets, and various connected devices [Cas14]. Examples for
such devices are smart locks, surveillance cameras, TVs, household appliances, or
environmental sensors. These devices and building systems produce large amounts
of sensitive personal data streams [Shi+16]. One example of a smart home task is
the aggregation and pre-processing of home video surveillance streams [San+14]*.
Such a case was examined by Abdallah et al. [AXS17]* in a prototype system. Their
results indicate that storing all sensor data in the cloud has a negative impact on
the available bandwidth in the home, pointing to Edge Computing as a solution.

Edge Computing could also be used for the aggregation of IoT data, and thus,
enable cooperation between devices by using sensors and physical capabilities of
multiple devices to complete a task [Yi+15; Pan+16]. Such a task could be send-
ing a robot vacuum cleaner with a camera to check on suspicious motion through
video analysis. Vallati et al. [Val+16] have envisioned an MEC architecture for smart
homes that builds on LTE with device-to-device communication for data locality and
low latency. Storing and processing smart home data in-home could also resolve
the issue of transferring privacy-critical data [Per+17b; Mor+16] and opens up the
possibility to combine data from IoT devices with personal data from other services
to provide higher-order, yet privacy-aware services. As proposed in [Fer+18]*, Edge
Computing and Fog Computing could also provide the missing link between various
building subsystems that are usually implemented independently. Thus, the result-
ing integration and interoperability between the individual subsystems, combined
with data analysis at the edge, could enable new smart services, like the activation
of smart devices when solar power is available.

4.2.3.b Industrial Internet of Things

One goal of the Industrial Internet of Things (IIoT)6 is to improve quality control in
manufacturing and increase productivity [Wan+18a]*, [LGS17]*. Collecting and
analyzing vast amounts of data from production processes can be a tool to find
inefficiencies and optimize production processes [LGS17]*,[AZH18]*. However,
since it is often impractical to store and analyze all collected data at the cloud in
real-time, Fu et al. [Fu+18]* suggest to pre-process, aggregate, and store time-
sensitive data on edge nodes, while storing less time-sensitive data in the cloud for
later analysis. Early detection of mechanical problems with production machines
has the potential to prevent both machine failures and production quality issues
[Oye17]*.

Monitoring machines produces large amounts of real-time data that lends itself
to being analyzed at the edge to monitor machine health or to predict tool wear
and service intervals in real-time [Oye17]*, [Wu+17a]*. Another goal of the IIoT
is to enable the production of highly customizable products on dynamically sched-
uled production lines, which can also profit from the low-latency property of Edge
Computing [Wan+18a]*. Lin et al. [LY18]* have presented a further application

5Heating, Ventilation, and Air Conditioning
6We use IIoT synonymously with industry 4.0 / advanced manufacturing

42 Chapter 4. Classification and Analysis of Applications

of Edge Computing for IIoT, namely the real-time scheduling of logistics in highly
automated warehouses.

4.2.3.c Agriculture & farming

Smart farming (or precision farming) targets the management of crop and livestock.
Many applications in this domain revolve around automation, e.g., for watering
crops or feeding livestock. Monitoring of environmental parameters and tracking of
animals can furthermore ensure a timely reaction if abnormal events are detected.
A delayed reaction can cause damages and production losses [ADH18]* and can
impact the entire supply chain. More complex tasks include the use of machine
learning methods for yield prediction or disease detection [Lia+18]*.

Pastor et al. [Pas+18] have presented a system for distributed computing in
agriculture that includes three layers: things (i.e., the individual sensors and sub-
systems), edge (responsible for the control of subsystems), and fog (providing local
storage and analytics). Tasks carried out at the local edge and fog layer include
data filtering, classification, and detection of events. The primary reason for carry-
ing out those tasks at nearby layers is latency, as the system tries to optimize itself
in real-time. Another example of a layered system can be found in [Car+17]*,
where Raspberry Pi computers are deployed as sensors in the environment and on
animals to monitor temperature and movement. This data is processed at an edge
layer on the farm itself, whereas cloud infrastructure is used to collect long-term
statistics. Besides a strong focus on the communication technologies at the edge
layer, the work of Ahmed et al. [ADH18] proposes a hierarchical structure of fog
nodes and suggests to carry out computations at local gateways. As one of only a
few approaches, it also considers the energy aspect of this local processing. How-
ever, their main arguments for edge processing are reduced latency and bandwidth
limitations.

Wolfert et al. [Wol+17] see big data analytics as a major disruption for farming
and have identified real-time analytics of agricultural data as a key challenge. They
emphasize the issue of data quality, i.e., errors in the raw data make operations
such as denoising and transformation necessary before further processing. From
the perspective of saving upstream bandwidth, edge deployments are beneficial in
such use cases. Similarly, Ivanov et al. [IBD15] have observed that many of the
sensor data gathered in smart farming contain redundancies that need to be fused
before being pushed to a centralized entity.

While a number of edge-enabled systems exist, we observe that most are closed,
hybrid deployment, i.e., the intermediate edge layer is deployed on-premise and not
part of a public Edge Computing infrastructure.

4.2.4 Human Augmentation

Human augmentation is the process of improving the well-being and capabilities of
humans. This augmentation can be done by oneself, e.g., through quantifying, ana-
lyzing, and subsequently influencing one’s behavior (Section 4.2.4.a), or in the con-
text of healthcare-related applications (Section 4.2.4.b). Moreover, Section 4.2.4.c
shows how human cognition can be augmented or assisted.

Privacy and data security are critical concerns in these types of applications due
to the intimate nature of the data. As shown by Fereidooni et al. [Fer+17], today’s
cloud-based services fail to provide data integrity, authenticity, and confidentiality.

4.2. Application Survey 43

However, those factors are critical for the acceptance of such services. Besides the
trustworthiness of the nodes that store or process the data, fine-grained access con-
trol policies for the remote access and forwarding (e.g., a physician can forward a
patient’s data to a pharmacy) should also be implemented. To realize this, we can
image a network of federated, trusted edge nodes across different organizations.

4.2.4.a Quantified self

With new affordable personal devices, people have gained an interest in collecting
and analyzing data about their own bodies and behaviors. This concept is com-
monly referred to as the quantified self [NS14]. Besides getting a deeper under-
standing of oneself, this data can also be useful in many health-related aspects, e.g.,
for personalized medicine or preventive medicine [Swa12]. Users are often inter-
ested in aggregate values, such as the total walking distance for a single day. Such
aggregation can be performed at the edge. If the users wish to rely on cloud ser-
vices, only those aggregated values are sent to the cloud. Aggregating and storing
data is an important use case for personal fitness trackers that count steps, monitor
one’s heart rate, or analyze sleep patterns. This type of wearable fitness technology
is a big part of the quantified self community today [Gil16].

Schmidt et al. [Sch+15]* present a digital fitness coach to support individu-
als in achieving fitness goals. The system generates training plans and is able to
adapt them, e.g., depending on a user’s movements. Among other data, data from
tracking devices is used. Bajpai et al. [Baj+15]* use heart-rate readings from wear-
able sensors to track physical activity, map the activity to calorie consumption, and
estimate the cardio-respiratory fitness of a person.

4.2.4.b Precision medicine

The umbrella term E-Health describes applications that make use of information
systems in order to improve people’s treatments and overall health. The concept of
connected health [Shi+16] describes how different actors (e.g., patients, hospitals,
and physicians) are linked in order to improve their services. In this section, we
summarize the above concepts as precision medicine. It has been noted that health-
care is one of the prominent applications for future information technologies [BZ11]
and that cloud-based healthcare can help to reduce the overall costs of healthcare
[Ala+10]. For a detailed survey of healthcare-related applications, we refer the
reader to Kraemer et al. [Kra+17]. Bui et al. [BZ11] have identified three require-
ments for healthcare applications: (i) interoperability, (ii) reliability and bounded
latency, and (iii) privacy, authentication, and integrity. Edge Computing can help
with the latter two. As an example, latency is especially critical if the application is
tied to a cognitive process or a time-critical control loop (see Section 4.2.4.c).

By monitoring the parameters of a patient and combining information from
health sensors with other ambient sensors, health-related issues can be detected.
One example is fall detection for stroke patients [Cao+15]*. To perform these tasks,
large amounts of raw data have to be analyzed or complex features need to be ex-
tracted [Gia+15]. Often the monitoring is part of a sense-process-actuate loop, i.e.,
whenever an event or anomaly is detected in the monitoring phase, a (timely) ac-
tion has to be taken. For telesurgery, latencies below 200 ms are optimal [Xu+14]*.
Such constraints can be challenging when relying on distant clouds. For other ap-
plications such as ECG monitoring, delays in the order of several seconds might be

44 Chapter 4. Classification and Analysis of Applications

acceptable [AG10]*. For less critical parameters, storing aggregate values for later
retrieval is sufficient. Amraoui and Sethom [AS16]* have presented an architecture
for patient monitoring in Wireless Body Area Networks (WBAN) that makes use of
cloudlets for close-by processing of sensor data. Hybrid edge-cloud systems also
exist, e.g., Althebyan et al. [Alt+16] have presented a scalable health monitoring
system that uses both Cloud Computing and Edge Computing. Similarly, Azimi et
al. [Azi+17] have developed a 3-tier system, in which tasks are partitioned among
the tiers. For example, the training procedure for machine learning algorithms is
carried out in the cloud, whereas the resulting classifiers are deployed closer to the
sensors.

4.2.4.c Cognitive assistance

The idea of cognitive assistance comes from the vision of augmenting human cogni-
tion through computing systems [Sat04]. These types of applications are, for exam-
ple, useful to assist the elderly who suffer from deteriorating senses or for patients
with neurological diseases, such as Alzheimer’s. Applications that aim to assist or
substitute the cognitive tasks of humans should preferably not be slower than hu-
mans. This is challenging, given that for instance, humans recognize familiar faces
in the order of a few hundred milliseconds [RCR11]*. Even more challenging, rec-
ognizing human voices takes 4 ms [Agu+10]*. These tasks are also computationally
intensive and hence require to offload the processing. Ha et al. [Ha+14]* have pre-
sented a system for wearable cognitive assistance. The system uses Google Glass
to capture live video and performs real-time scene interpretation using different
components, such as activity inference, face recognition, and motion classifiers.

4.3 Summary

Table 4.1 summarizes prominent use cases from the previous Section 4.2 and shows
how the promised benefits of Edge Computing (see Section 3.1) are applicable to
them. For this, we use the following semantics:

+ + Edge Computing is absolutely necessary to ensure the requirements,
and these cannot be fulfilled by relying on the cloud. Furthermore,
local processing cannot ensure the expected quality of experience.

+ Edge Computing is beneficial and improves the quality of the service
and/or its experience for the users.

◦ The benefit of Edge Computing heavily depends on the concrete sce-
nario and context in which the application operates.

– Edge Computing brings no real-world benefit or the attribute is not
relevant for the application. For example, even though Edge Com-
puting might improve the latency in absolute numbers, this might not
be critical in applications where the computation or actuation takes
far longer than the communication.

The last four columns of the table indicate which of the components as defined
in Section 4.1.1 are used by that use case.

4.3. Summary 45

TABLE 4.1: SYSTEMATIC OVERVIEW OF SURVEYED USE CASES†

La
te

n
cy

B
an

dw
id

th

En
er

gy

Pr
iv

ac
y

C
on

so
li

da
ti

on

Fi
lt

er
in

g

St
or

ag
e

O
ffl

oa
di

n
g

Mobile Device Augmentation
Gaming

Scene rendering [MKB18b; LS17] + + + + – � � � �

Collaboration of neighboring
players [Cai+18; PS18]

+ + + + – � � � �

AR/VR

Rendering [Shi+19] + + + + + – � � � �

Hybrid rendering [Lai+17] + + + + – � � � �

Reconstruction of 3D maps
+ + + + – � � � �

[Boh+15]

Content delivery

Video streams [AD14] – + – – � � � �

Website delivery [Zhu+13] – ◦ – – � � � �

Applications and updates
– + – – � � � �

[Bha+15b; Bha+15a]
Collaborative caching
[LYS16; Tra+17]

+ – ◦ ◦ � � � �

Storage

Storage for edge analytics
+ + ◦ ◦ � � � �

[LMB17]
Reverse CDN [Sch+17; Ged+18b]
[Psa+18; MSM17]

◦ + ◦ + � � � �

Document synchronization
– + – ◦ � � � �

[Hao+17]
Personal data storage
[Cha+15; Mor+16; Per+17b]

◦ ◦ ◦ + � � � �

Infrastructure Augmentation
Smart Grids

Monitoring and control [Fre+13] ◦ + ◦ + � � � �

Scheduling distributed energy
resources [PSM10]

+ ◦ – ◦ � � � �

Traffic & Transportation

Adaptive traffic light [Gha+16] – ◦ – + � � � �

Detection of road hazards [CDO19] ◦ ◦ – – � � � �

Traffic planning
– ◦ – ◦ � � � �

[Zhe+11; Sat+17; QKB17]
Emergency vehicle route
clearance [Nun+15]

– + – – � � � �

Autonomous Driving

Disseminating data to
+ + + – ◦ � � � �

vehicle [DBH15; Yua+18]
Processing LIDAR data [Qiu+18] + + + – – � � � �

46 Chapter 4. Classification and Analysis of Applications

La
te

n
cy

B
an

dw
id

th

En
er

gy

Pr
iv

ac
y

C
on

so
li

da
ti

on

Fi
lt

er
in

g

St
or

ag
e

O
ffl

oa
di

n
g

Environment

Pollution monitoring
– ◦ – – � � � �

[ZLH13; Zhe+14b]
Pollution monitoring via
crowdsensing [Mai+09]
[Sch+12; Dut+17; MAŽ18]

– + + + � � � �

Optimizing garbage collection
– – – – � � � �[AZM15; Per+14b];

[Aaz+16; Med+15]

Emergency Response

Emergency notification [AH15] – ◦ – – � � � �

Situation awareness/ mobile
command and control [Chu+13]

◦ + – ◦ � � � �

Ad-hoc communication in
+ + + + – – � � � �disaster scenarios [Meu+17c]

[Sat+13]

Surveillance

Vehicle tracking [Che+17a] ◦ + – + � � � �

Just-in-time video
indexing [Sat+17]

+ + + ◦ + � � � �

Biometric identification [Sto12] – ◦ ◦ + � � � �

IoT Device Augmentation
Smart Home/Building

Video surveillance [San+14]
– + + – + � � � �

[AXS17]
Coordination of building
subsystems [Fer+18]

◦ ◦ – + � � � �

Industrial IoT

Production process
– ◦ ◦ + � � � �

analysis [AZH18; LGS17; Fu+18]
Machine condition
monitoring [Wu+17a; Oye17]

◦ + – + � � � �

Warehouse logistics ◦ + – + � � � �
scheduling [LY18]
Dynamic production line
scheduling [Wan+18a]

+ ◦ – + � � � �

Agriculture & Farming

Monitoring plants/lifestock
– + + + ◦ � � � �

[ADH18; Car+17]
Yield prediction [Lia+18] – ◦ – + � � � �

Human Augmentation
Quantified Self

Analyzing fitness tracker
– ◦ + + � � � �

data [Sch+15; Baj+15]

4.3. Summary 47

La
te

n
cy

B
an

dw
id

th

En
er

gy

Pr
iv

ac
y

C
on

so
li

da
ti

on

Fi
lt

er
in

g

St
or

ag
e

O
ffl

oa
di

n
g

Precision Medicine

Fall detection [Cao+15] – + + + � � � �

Patient monitoring with WBAN
[AS16]

◦ + ◦ + � � � �

Remote surgery [Xu+14] + + – ◦ � � � �

Analyzing ECG features [AG10] – ◦ – + � � � �

Cognitive Assistance

Face recognition [RCR11] + + ◦ + � � � �

Speech recognition [Agu+10] + + ◦ ◦ + � � � �

Wearable cognitive
+ + + + + � � � �

assistance [Ha+14]

From this analysis, we conclude this chapter by summarizing the main observa-
tions:

OBSERVATION I: DIVERSE OBJECTIVES | The motivations to use Edge Computing
are very diverse. Consequently, most use cases only profit from a subset of
the potential benefits. The heterogeneity of objectives and use cases means
that there is no “one size fits all” solution when it comes to the question if an
application should be moved to the edge.

OBSERVATION II: NOT INDISPENSABLE FOR MOST APPLICATIONS | While most of the
presented applications can benefit from one or more aspects of Edge Comput-
ing, resulting in higher quality of service or user satisfaction, few applications
cannot fundamentally function without Edge Computing.

Thus, economical considerations are important to determine if Edge Comput-
ing is sensible for a given use case. The fact that there are no established busi-
ness models and ubiquitous infrastructures for Edge Computing yet prevents
most of these applications from being moved to the edge today. However,
once Edge Computing infrastructures are widely available, a large number of
applications are likely to use it.

OBSERVATION III: “KILLER APPS” DO EXIST | We identified some applications for
which Edge Computing is indispensable, either regarding latency (e.g., ren-
dering for AR/VR) or bandwidth (e.g., the processing of several video streams
or LIDAR data). Furthermore, Edge Computing can provide an emergency
communication and computing infrastructure, thus creating a more resilient
overall public infrastructure.

OBSERVATION IV: CROSS-LAYER APPLICATION DESIGN |Many works propose layered
system architectures, where applications are split between the layers. While
the number and naming of the layers differ (the common ones being: local,
edge, cloud, and sometimes intermediate fog layers), the common motivation
is to exploit the favorable characteristics of each layer. How to efficiently
partition applications across layers is still an ongoing field of research.

48 Chapter 4. Classification and Analysis of Applications

OBSERVATION V: OFFLOADING OBJECTIVES | There are two common motivations
for offloading. First, offloading can accelerate latency-critical computations
on devices with low computing power. Latency reductions are especially use-
ful for demanding real-time computations, especially for mobile gaming, AR,
VR, and autonomous driving. The second motivation for offloading is to save
energy on battery-constrained devices. Furthermore, energy benefits are usu-
ally only viewed from the perspective of the end devices, and the effect on
the overall energy footprint remains unclear, e.g., when taking into account
the energy efficiency of the edge surrogates or network middleboxes.

OBSERVATION VI: BANDWIDTH IS CRITICAL FOR INFRASTRUCTURE AUGMENTATION

AND IOT DEVICES | Applications in the domain of infrastructure augmenta-
tion and IoT devices tend to have little demand for computation offloading.
However, nearly all of our surveyed applications in these two categories im-
plement the consolidation and filtering components. Compared to the cloud,
Edge Computing can achieve large bandwidth savings for applications that
process big ephemeral data. Thus, while latency tends to be only a minor
issue in those use cases, they can profit from the bandwidth-saving aspect of
Edge Computing.

OBSERVATION VII: PRIVACY HAS GREAT POTENTIAL | There is a clear division be-
tween applications where the privacy-protecting aspect of Edge Computing
is relevant and those where it is not. The privacy aspect can be of tremen-
dous relevance for sensor data that contains trade secrets or sensitive personal
data. There is great untapped potential for research in this direction to fully
exploit the privacy benefits of Edge Computing.

4.4 Conclusion and Requirements

In chapters 2–4, we have provided a detailed description and analysis of the field
of Edge Computing, starting from a taxonomy (Chapter 2), analyzing its character-
istics (Chapter 3), and providing a detailed survey of Edge Computing applications
(Chapter 4). From these findings, this chapter derives requirements for Urban Edge
Computing and outlines how those are addressed in the remainder of this thesis.

REQUIREMENT I (RQ-1): DENSE NETWORK OF MICRO DATA CENTERS | Existing data
center infrastructures will not be able to fulfill the requirement of providing
proximate computing resources. This is especially true if we consider mobile
users in an urban area. Those users have demanding requirements in terms of
resources and mobility (as they change their position frequently). To provide
good quality of service to those users, we need new types of dense cloudlet
infrastructures in our surroundings.

REQUIREMENT II (RQ-2): DYNAMIC COMPOSITION OF APPLICATIONS | In most cases,
it is beneficial to offload only certain parts of an application, e.g., those that
are the most compute-intensive or have the most impact on the device’s bat-
tery life. Hence, to enable fine-grained offloading of application functionality,
edge-enabled applications should be composed of modular parts. Following
the paradigm of microservices, these parts can be dynamically composed and
offloaded at runtime.

4.4. Conclusion and Requirements 49

REQUIREMENT III (RQ-3): LOW-OVERHEAD OFFLOADING | Offloading applications
or part thereof incurs an overhead, e.g., by having to transfer the offloadable
parts from a (mobile) device to the surrogate. Ideally, this overhead should be
low, both to save energy and bandwidth. This can, for instance, be achieved
by pre-provisioning or caching offloaded services.

REQUIREMENT IV (RQ-4): SHARING OF SERVICES AT RUNTIME | While Cloud Com-
puting infrastructures are able to offer highly scalable and elastic resources,
this is more challenging in an edge environment because the resources at in-
dividual cloudlet locations are limited. Based on the observation that we op-
erate in a highly dynamic environment (with regards to changes in demands,
user locations, and network conditions) and resources at a single edge loca-
tion are limited, running service instances should be shared among different
client applications. To realize this, services should be implemented as stan-
dardized and reusable components. Sharing services avoids over- and un-
derprovisioning of resources, and hence, allows for a more efficient usage of
resources.

REQUIREMENT V (RQ-5): SOPHISTICATED PLACEMENT DECISION FOR COMPUTING

FUNCTIONALITIES AND DATA | The dynamic composition of (shared) appli-
cations means that for each component, we need to make an informed
decision—e.g., based on available resources, data location, and network
connections—on where to place it on available (edge) resources. In addition
to functional components, data captured by (mobile) users should be placed
in a way that takes into account the user’s context and facilitates sharing.

REQUIREMENT VI (RQ-6): DYNAMIC SERVICE ADAPTATIONS AT RUNTIME | A single
functionality can be implemented in a number of ways, with varying impact
on the quality of the computation and the resulting runtime of the service.
In a dynamic edge environment, where pipelined services are shared among
different applications, services should be adaptable to tradeoff those charac-
teristics to optimally meet users’ demands. Besides the integration of mecha-
nisms that control the execution of service variants, this also requires support
for application developers for the definition and assessment of service vari-
ants.

4.4.1 Remaining Thesis Outline

The contributions of parts II–IV are structured following a bottom-up approach and
address the requirements defined above, as shown in Figure 4.3. We begin with the
infrastructure (Part II), followed by the execution framework for Edge Computing
(Part III) and, lastly, the strategies and runtime adaptations that can be applied
during the system’s execution (Part IV).

Chapters 5 and 6 address RQ-1 by investigating the deployment of cloudlets on
a city-scale infrastructure. The Edge Computing framework presented in Chapter 7
is based on the paradigm of independent and composable microservices (RQ-2).
Provisioning of services is done through a microservice store, avoiding costly (prior)
transfers of executables from the client devices to surrogates (RQ-3). The proposed
Edge Computing framework also allows the sharing of running service instances
(RQ-4).

50 Chapter 4. Classification and Analysis of Applications

Infastructural
Support

Control &
Execution

Strategies &
Adaptations Operator

Placement
Context-Aware
Micro-Storage

Microservice
Adaptations

Chapter 8 (RQ-5) Chapter 9 (RQ-5) Chapter 10 (RQ-6)

Edge Computing Framework

Chapter 7 (RQ-2) (RQ-3) (RQ-4)

Pa
rt

 IV
Pa

rt
 II

I
Pa

rt
 II

Urban Cloudlet Placement

Chapter 5 (RQ-1)

Coverage Analysis of Urban
Cloudlets

planning

execution

Chapter 6 (RQ-1)

FIGURE 4.3: CONTRIBUTIONS OF PARTS II–IV

Chapters 8 and 9 address the placement of functional parts of applications and
data (RQ-5). Lastly, Chapter 10 proposes mechanisms to make microservices adapt-
able at runtime (RQ-6).

Part II

Infrastructural Support

Infrastructural Support

Control & Execution

Strategies & Adaptations

In this part, we investigate the physical infrastructural support required
for Urban Edge Computing, i.e., the actual deployment environment of
cloudlets in an urban area. The infrastructure presented in this part is
the basis to provide Edge Computing services. The concepts presented
in the subsequent parts of the thesis are deployed on top of this infra-
structure. In detail, this part addresses two problems.

First—based on the observation that building new infrastructure from
scratch is costly—Chapter 5 analyzes how we can leverage existing in-
frastructure resources in a city to place cloudlets. This chapter is largely
based on the publications [Ged+18c; Ged+18d].

Second, given urban infrastructures for a potential placement of cloudlets,
Chapter 6 investigates the problem of where to place cloudlets on het-
erogeneous infrastructures. This chapter in turn is in large parts based
on the work published in [Ged+18d].

In this part, text segments that are verbatim copies of [Ged+18c] or [Ged+18d] are printed in brown
color and gray color, respectively. Tables and figures taken or adapted from these publications are marked
with † ([Ged+18d]) and †† ([Ged+18c]) in their caption.
Contribution statement: The student Jeff Krisztinkovics helped in the collection of access point data
and implemented parts of the functionality for the computation of coverage in the context of his Bache-
lor’s thesis [Kri19].

51

CHAPTER 5

Coverage Analysis of Urban Cloudlets

Chapter Outline
5.1 Introduction . 53

5.2 A Multi-Cloudlet Urban Environment 54

5.3 Related Work . 57

5.4 Datasets . 59

5.5 Coverage Metrics . 64

5.6 Coverage Analysis . 67

5.7 Conclusion . 75

5.1 Introduction

One of the important building blocks and a recurring term used in the description
of Edge Computing deployments is the concept of cloudlets—small-scale data cen-
ters that offer proximate resources for storage and computations (see Chapter 2).
Cloudlets can therefore be considered as the infrastructural basis which our other
contributions build upon. Most importantly, cloudlets will be responsible for host-
ing the execution and control environment for Edge Computing applications (see
Chapter 7).

Previous research has addressed various problems that often relate to runtime is-
sues of cloudlet deployments, for instance offloading mechanisms (e.g., [Cue+10])
and programming models (e.g., [Hon+13]). However, little attention has been paid
to the question of where to deploy cloudlets on a city-scale. A dense deployment
of cloudlets is one of the requirements we have identified for Urban Edge Com-
puting (see RQ-1 in Section 4.4). Cloudlets require resources to be deployed and
operated. Besides power and network connectivity, we require physical space to
install (additional) hardware that serves as cloudlets. In this chapter, we refer to

53

54 Chapter 5. Coverage Analysis of Urban Cloudlets

locations where such resources are available as infrastructure. Contrary to a data
center environment, where the abovementioned resources are inherently present,
this is not the case in an urban environment, making the deployment of cloudlets
more challenging. Because newly building those resources is costly, this chapter
investigates if we can leverage existing urban infrastructures for the placement of
cloudlets and hence, provide infrastructural support for Edge Computing applica-
tions. More specifically, we suggest to co-locate cloudlets with wireless access points
at three types of existing infrastructures present in cities: (i) cellular base stations,
(ii) commercial off-the-shelf WiFi routers, and (iii) smart street lamps. We argue
that those infrastructures are viable locations to deploy cloudlets. In Section 5.2,
we describe them in more detail and study their particular characteristics.

After reviewing related work in Section 5.3, the following sections investigate
whether these infrastructures are sufficient to provide coverage in an urban area,
given that realistically, only a fraction of them will be upgraded to host cloudlets. To
answer this question, we perform a systematic coverage analysis (Section 5.6), using
four different coverage metrics, as defined in Section 5.5. The different coverage
metrics allow us to quantify the quality of service that can be expected for different
application use cases. In order to base our analysis on realistic data, we collected a
large body of data (see Section 5.4) for a German city, containing locations of the
infrastructures and user traces from mobile applications. The results of the coverage
analysis based on these datasets serve two purposes:

• We are able to show that leveraging urban infrastructures has the potential
to enable a city-wide deployment of cloudlets. A cloudlet deployment that
covers large parts of a city is furthermore an important enabler for future
smart city applications, like the ones presented in Section 4.2.2.

• The result of the analysis can serve as an aid for planning a cloudlet deploy-
ment, e.g., by estimating the number of cloudlets for a target coverage. Fur-
thermore, it allows for the identification of regions without coverage where
infrastructure resources must be deployed in order to provide Edge Comput-
ing services.

5.2 A Multi-Cloudlet Urban Environment

In this section, we present three types of infrastructures that are able to accom-
modate cloudlets. We assume that these infrastructures host wireless access points
to which users can connect and hence, access the resources and services provided
by the cloudlets. Before describing them in detail, we first describe the general
characteristics and requirements of such infrastructures.

For our urban scenario, we consider cloudlets to be hosted on three types of
infrastructure: cellular base stations, routers, and street lamps. We specifically
investigate those types of infrastructure because they are ubiquitously present in
urban spaces. Figure 5.1 illustrates an environment of different access point types,
with cell towers in purple, routers in green, and smart street lamps colored in or-
ange. Common to all these three types of access points is their dense deployment in
urban spaces and their function as a wireless connectivity gateway to mobile users.
For cellular base stations and routers, we can further assume a powerful backhaul
connection in terms of bandwidth and ample physical space at the point of presence
to co-locate additional hardware.

5.2. A Multi-Cloudlet Urban Environment 55

FIGURE 5.1: A MULTI-CLOUDLET URBAN INFRASTRUCTURE†

Mobile users in the vicinity of these cloudlets can then make use of them to off-
load data and computations. The different types of access points are heterogeneous
in several ways. First, due to different wireless access technologies, their communi-
cation ranges vary. A cellular base station can cover a wider area than a WiFi router
in an urban environment. With the advent of new communication technologies,
we expect to see other kinds of deployments, e.g., small-scale cellular base stations
(so-called femtocells [CAG08]) on street lamps. Second, due to the varying phys-
ical space available for hardware installations at the access points, the resulting
computing power colocated at one access point will differ. For example, installing
server-grade hardware is difficult in the restricted space of street lamps, while this
is likely the predominant deployment model for cloudlets at the Radio Access Net-
work, i.e., at the location of cell towers. Depending on the resources they provide
and the underlying business model, installing cloudlets incurs varying costs. Chap-
ter 6 will describe how this heterogeneity makes the decision challenging, which
access points to equip with cloudlets.

Lastly, we have different stakeholders that own or operate the infrastructure,
ranging from ISPs and mobile network operators to businesses, municipalities, or
private citizens. We refer the reader to Section 3.4 and Section 11.2.3 for a more
extensive discussion on stakeholders and (future) business models for Edge Com-
puting. Regardless of the underlying business model for the usage of cloudlets, we
argue that the use of existing infrastructure as well as future infrastructures, such
as lamp posts in the context of smart cities, allows a cost-effective placement of
cloudlets, since it avoids the construction of new access points. Table 5.1 summa-
rizes the characteristics of each cloudlet type.

5.2.1 Cellular Base Stations

Each major city today features widespread cellular coverage, albeit at varying qual-
ity and speed. Even though some areas still lack satisfying coverage and connec-
tion speeds, cellular base stations represent a viable location for the deployment
of cloudlets if we want to cover large areas. First, existing radio access networks
have a high-bandwidth backlink on-site. In the case of cloudlets, this could be
important if there is the need to retrieve large amounts of data from the cloud.
Furthermore, this is an important asset to perform quick intra-network handover
and enable distributed computations. Second, at most cellular stations, there is

56 Chapter 5. Coverage Analysis of Urban Cloudlets

TABLE 5.1: CHARACTERISTICS OF ACCESS POINT TYPES†

Cellular Routers Street lamps

base stations

Density low high high

mobile network ISP, businesses
Ownership

provider or private
municipality

Access
3G, 4G, 5G WiFi

WiFi, Femtocells,

technology LoRa, mmWave

Communication range high low low-medium

Computational
high low–medium low

resources

enough physical space available to install massive computing resources in the form
of server-grade hardware. Another advantage of cellular base stations is their high
reliability [EZB17].

Leveraging resources co-located with the radio access network is commonly re-
ferred to as Mobile Edge Computing (MEC) and seen as a viable deployment model
to make Edge Computing available [Li+16b; Abb+18; SBD18]. This deployment
model is predicted to gain importance with the advent of the new 5G cellular stan-
dards [Nun+15; Hu+15b] because those offer processing capabilities within the
network. For network operators and cellular service providers, Mobile Edge Com-
puting is a future business opportunity, as they will be able to rent out computational
resources located at base stations.

5.2.2 Routers

Next, we consider commercial off-the-shelf WiFi routers. In urban areas, the density
of WiFi routers is very high. This includes both privately-owned devices as well as
public access points offered by businesses like cafes or restaurants. The latter is a
service increasingly valued by customers. Using WiFi routers as cloudlets is advan-
tageous, given their ubiquity. Performing computations on the routers themselves
has been investigated before (see Section 5.3.1), but they also offer the possibility
to co-locate rather powerful hardware in the local network they are connected to.

While the motivation for businesses to provide cloudlets might be to enhance
service for their customers, the incentives for private citizens are less obvious. We
can, however, make two observations in this regard. First, several initiatives already
promote the sharing of ones WiFi to give others internet access (e.g., Freifunk1 in
Germany). We argue that going one step further—from providing free access to
free computations and/or storage—is the next logical step. Second, the incentive
to provide a cloudlet could also come from one’s internet service provider. For
instance, service providers could install equipment and applications at the users’
premises and compensate them with a reduced subscription bill.

1https://freifunk.net/ (accessed: 2019-10-30)

5.3. Related Work 57

5.2.3 Street Lamps

Besides service providers, businesses, and private citizens, municipalities also have
an inherent interest in enabling services that lead to smarter cities. For this reason,
we envision cloudlets to be placed on lamp posts. A lamp post is a viable location to
place a cloudlet for two reasons: First, there is a large number deployed in every city,
sometimes with the distance between two lamp posts being only a couple of meters.
Therefore, especially in densely populated areas, they can very well complement
cell towers and routers to provide dense coverage. Second, from the perspective
of users moving on a city street, the wireless signal is less obstructed compared to
WiFi access points that are typically placed in buildings.

Upgrading lamp posts to host cloudlets might seem to incur a huge investment
at first, since wireless access points and uplink networks are typically not readily
available. However, we can observe a trend that municipalities around the world
are currently in the process of updating their street lighting, mostly due to energy
considerations. According to the Humble Lamppost project2, 75 % of lamp posts in
Europe are over 25 years old and consume between 20 % and 50 % of a city’s en-
ergy budget. Therefore, investments to upgrade lamp posts to LED-based lighting
will quickly amortize due to the energy savings of LED lamps. In the process of
upgrading, additional functionalities, such as sensory capabilities, network connec-
tivity, and computing resources can be installed to turn traditional street lamps into
smart street lamps. A number of commercial products are already available, e.g.,
the SM!GHT3 lamp by the German company EnBW. These efforts towards smart
street lamps furthermore have resulted in a DIN standard [DIN18].

We argue that in view of this trend, installing additional hardware to provide
computing resources is a negligible additional investment, compared to the overall
cost of upgrading the street lamps. It should however be noted, that upgrading
street lamps might also require changes in the entire electric infrastructure that
powers the lamps. For instance, today most lamps do not feature a switch that could
control the power supply of different components. Instead, lamps are centrally
turned on and off.

In conclusion, this section presented three types of available infrastructures in
today’s cities that meet the requirements to be equipped with cloudlets: dense de-
ployment, physical space and power supply for additional hardware, and wireless
network connectivity.

5.3 Related Work

5.3.1 Urban Cloudlets

To the best of our knowledge, previous works have not considered the combined
use of different types of cloudlet infrastructures in an urban area. Providing of-
floading capabilities at the radio access network (RAN) has been investigated in a
number of publications [Bec+14; Mao+17; Abb+18], with the special case of so-
called femtocells [CAG08], which are less expensive to deploy and operate. WiFi
routers have been suggested as Edge Computing devices, either as hosts for the
computations themselves [Meu+15], as a joint infrastructure for computations and

2https://eu-smartcities.eu/initiatives/78/description (accessed: 2019-10-30)
3https://smight.com/en/ (accessed: 2019-10-30)

58 Chapter 5. Coverage Analysis of Urban Cloudlets

bridging communications [Meu+17c], or to perform auxiliary functions in an Edge
Computing system, e.g., the discovery of Edge Computing nodes [Ged+17].

Some works [BMV10; Lee+13] investigate the interplay between WiFi and cel-
lular connections. Balasubramanian, Mahajan, and Venkataramani [BMV10] study
the availability of 3G and WiFi networks in a city and suggest two different switching
mechanisms—for delay-tolerant and delay-sensitive applications— to complement
3G connections with WiFi networks. In an empirical study, the authors compare
throughput and loss rates for both network types and argue that WiFi networks can
help to reduce costs and alleviate stress on cellular networks. Lee et al. [Lee+13]
conduct a quantitative study on the savings of traffic and battery power when of-
floading 3G traffic through WiFi. The authors also consider applications where long
delays (in the order of 100 seconds) are tolerable. However, as we have argued in
Section 3.1 and Chapter 4, these are not realistic assumptions for applications that
will be deployed at the edge. Similarly, Dimatteo et al. [Dim+11] have shown that
a small number of WiFi access points are sufficient to serve delay-tolerant applica-
tions.

Visions for offloading infrastructures also include the use of vehicles [Wan+16;
GZG13; Hou+16] and drones to host cloudlets [Sat+16; JSK18a]. While some
works have proposed to make existing street lamps smarter [Jia+18], to the best of
our knowledge, our contributions in [Ged+18c; Ged+18d]were the first to consider
street lamps for hosting cloudlets.

5.3.2 Coverage

The term coverage is most widely used in the context of Wireless Sensor Networks
(WSNs) [HT05]. Consequently, the problem of coverage has been studied exten-
sively in this context, as analyzed in various surveys [Wan11; MHS17; MA10;
GD08]. In WSNs, coverage describes how well an area of interest can be monitored
[MHS17; Wan11] by sensors or people [GS15]. Coverage is therefore an aspect
and a metric for the quality of service the network of sensors is able to deliver.

Several established definitions of coverage exist, for example, sweep coverage
[Li+11] or barrier coverage [Liu+08]. However, many of those definitions cannot
meaningfully be applied to analyze cloudlet coverage in an urban scenario. For in-
stance, barrier coverage denotes the singular detection of a target inside an area.
This is not a sensible metric for our application domain because we want mobile
users to have a continuous connection to cloudlets and not just at a single point in
time. Close to our definitions of coverage that will be introduced in Section 5.5, the
work of Fan et al. [FJ10] proposes three different definitions of coverage, namely
area, point, and path coverage. We adapt those to our urban cloudlet context and
will add time coverage as another metric for coverage. In our urban cloudlet sce-
nario, coverage indicates the connection to an access point on which a cloudlet is
co-located, and hence, is a metric for how well offloading demands of mobile users
can be served by cloudlets.

A very limited number of works have investigated coverage in the context of
cloudlet deployments for Edge Computing. Syamkumar et al. [SBD18] analyze
the deployment characteristics of cell towers w.r.t. the population distribution and
density in the US. Other works have investigated the coverage of WiFi access points
in case studies related to computational offloading, but only considered one type
of coverage, e.g., spatial [Bur+15], point [Mot+13], or temporal [Meu+17a] cov-
erage. As an exception, Lee et al. [Lee+13] consider both spatial and temporal

5.4. Datasets 59

(a) Administrative city
boundary†

(b) Inner city area† (c) Access point locations on a sam-
ple section of the city center

FIGURE 5.2: DARMSTADT CITY CLOUDLET DATASET

coverage for WiFi access points. Similar to what we describe in the related work
about the cloudlet placement problem (see Section 6.2), Liao et al. [Lia+11] as-
sume that we can freely place cloudlets to optimize their coverage. In contrast, this
chapter is intended to provide an empirical study on the coverage of existing access
point infrastructure.

To conclude the analysis of related work, none of the existing works have jointly
considered the three types of cloudlet infrastructure (cellular base stations, routers,
street lamps), both for the coverage analysis with four types of coverage (spatial,
point, path, and time coverage) and the placement of cloudlets on those infrastruc-
tures.

5.4 Datasets

We investigate the placement of cloudlets in the city of Darmstadt (Germany), a
major city with a population of about 150 000. To do so, we use real-world data for
both the location of access points and the traces of mobile users as described here-
inafter. The official administrative boundary of the city is depicted in Figure 5.2(a).
We restrict our analysis in the remainder of the paper to the inner city area (span-
ning an area of 15.57 km2) as shown in Figure 5.2(b) because most of the access
point data gathered lies within that boundary. This is especially true for the routers,
which were collected by volunteers. Furthermore, the inner city area allows us to
study the interplay between all three types of infrastructure, not all of which might
be available with the same density in more rural areas.

5.4.1 Access Point Locations

In total, we collected the locations of nearly 50 000 access points throughout the city
for the different types of access points. Figure 5.2(c) shows a typical distribution
of cell towers (purple), routers (green), and lamp posts (orange) on an exemplary
small section of Darmstadt. We now describe the origin and extent of the access
point location data.

60 Chapter 5. Coverage Analysis of Urban Cloudlets

5.4.1.a Cellular Base Stations

The Bundesnetzagentur (Federal Network Agency) is the regulating body in Ger-
many in charge of authorizing and supervising the operation of radio installations.
A map of all transmitting stations, including cell towers, can be accessed through
their website4. However, the website does not provide a feature to export the data.
Thus, we performed a manual crawl using the network panel of the Google Chrome
browser developer tool. We issued a query of all the cell towers within the city and
parsed the resulting JSON data that contains their GPS locations.

5.4.1.b WiFi Routers

We followed a so-called wardriving approach to collect information about WiFi net-
works in the city and used this data to estimate the position of routers within the
city. Using a modified version of WiFiAnalyzer5, an open source Android application,
volunteers walked around the city and collected the signals from available WiFi ac-
cess points. We used the raw data from two volunteering campaigns, conducted in
March 2016 and February 2018. In total, 27 participants—mostly students—were
involved. We made the dataset and the source code of the tools publicly available
to the research community6. More details about the collection process are given in
Explanation 5.1. It is important to note that this dataset might include some wrong
or inaccurate data. This is due to the nature of the wardriving approach. GPS
receivers only operate with a certain accuracy and calculating the distance to an
access point from the received signal strength is based on an approximative model.
However, we argue that overall, this gives a reasonable estimation of the available
routers to place cloudlets. More importantly, the data was collected while walking
or driving through the city and not inside buildings or private locations, therefore
reflecting the usage context of a mobile user who wishes to perform opportunistic
offloading.

EXPLANATION 5.1: DATA COLLECTION THROUGH WARDRIVING

Wardriving is “the act of moving around a specific area and mapping the pop-
ulation of wireless access points for statistical purposes” [Hur04]. We obtained
raw measurements from the aforementioned Android application, containing
signaling information from the access point, such as their SSID and BSSID.
Furthermore, based on the received signal strength indicator (RSSI), the appli-
cation estimates the user’s distance to the access point. We collect this raw mea-
surement data from every participant. Before further processing, we perform
a lookup on the router’s MAC address, i.e., the reported BSSID, and manually
eliminate all entries from manufacturers that do not produce routers. The posi-
tions of the access points were then estimated via multilateration from multiple
measurements of the same access point.

4http://emf3.bundesnetzagentur.de/karte/ (accessed: 2019-11-16)
5https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer (accessed: 2019-11-01)
6https://github.com/Telecooperation/darmstadt-wifi (accessed: 2019-11-07)

5.4. Datasets 61

For multilateration, a mini-
mum of 3 measurements is
required (trilateration). The
figure on the right illustrates
this for 3 users u1, u2, u3 that
report distances d1, d2, d3 to
the access point, with the pos-
sible location of the access
point being in the hatched red
area. We use an iterative
approximation algorithm, im-
plemented in Ruby, to find a
valid location, i.e., one where
the circles representing the
distances intersect. The rele-
vant part of the source code
can be found in Appendix A.

u1 u2

u3

d1

d2

d3

5.4.1.c Street Lamps

We obtained a database export of the position of all street lighting installations in
Darmstadt from e-netz südhessen GmbH7, the company in charge of managing the
city’s electrical infrastructure. The dataset includes different types of street lighting,
such as lights hung via cables over streets, but we only include fixed lamp posts for
our further analysis of cloudlet coverage and placement, as they provide enough
space and a safe enclosure to install additional hardware for cloudlets.

To conclude the description of the access point datasets, Table 5.2 summarizes
the number and density of each access point type for the entire administrative city
boundary and the inner city area (see Figures 5.2(a) and 5.2(b)).

TABLE 5.2: NUMBER OF COLLECTED ACCESS POINTS†

Cellular Routers Street lamps

base stations

Administrative boundary 205 34 699 14 331

Density per km2 1.7 284.0 117.3

Inner city 66 31 974 5608

Density per km2 4.5 2194.5 384.9

5.4.2 Mobility Traces

Several important types of coverage take into account the user’s position. Therefore,
we need realistic mobility traces that reflect where in the city we have demands for
offloading. While a lot of research exists about mobility models [Zhu+15; Jar+03;
YLN03], we want to base most parts of our analysis on real-world mobility traces.

7https://www.e-netz-suedhessen.de/ (accessed: 2019-11-07)

62 Chapter 5. Coverage Analysis of Urban Cloudlets

TABLE 5.3: MOBILE APPLICATION TRACES†

Kraken.me Ingress CrowdSenSim

Users 205 1401 2499

Data points 437 417 520 409 431 001

Paths 11 930 47 915 44 150

For our analysis, we use data from two mobile applications, Kraken.me and Ingress,
described in Sections 5.4.2.a and 5.4.2.b. The former is a persona tracking frame-
work while the latter is a mobile AR game. The datasets allow us to model where
offloading capacities will be required in the future. For instance, upcoming ver-
sions of the Ingress game might require more sophisticated processing for AR that
cannot be handled by the mobile device itself. Additionally, we include simulated
mobility data generated with CrowdSenSim (see Section 5.4.2.c), a tool designed
for simulating crowdsensing applications.

The three datasets differ with respect to the mobility patterns they represent. In
addition, they feature locations both inside buildings and outside. We believe that
combining them in our analysis allows our findings to be applied to more than one
application use case. For example, Kraken.me records the daily activities of users,
i.e., for a large fraction of time users are at home or work, while Ingress directs
users to specific locations in the city.

From the raw data, we first perform trace analysis [Pan+13a] in order to obtain
meaningful representations for the analysis (e.g., paths with sufficient lengths) and
to reduce redundant data (e.g., data points that are very close to each other). In
addition, this step also removes data points that are obviously erroneous. For ex-
ample, some user devices in the Kraken.me applications reported wrong positions
(outside Germany although the campaign took place only there) and timestamps
(outside of the campaign duration). Further details and criteria for filtering the raw
data are described in Explanation 5.2. Table 5.3 summarizes the resulting number
of distinct users, data points, and paths after this pre-processing.

EXPLANATION 5.2: LOCATION DATA PRE-PROCESSING

We apply the following pre-processing steps to the raw location data obtained
from our datasets:

• Data points not contained within the inner city area of Darmstadt (see
Figure 5.2(b)) are discarded.

• We remove data points with invalid timestamps, i.e., locations that are
timestamped outside the range of when the measurements are known
to have happened. Not doing so would lead to a wrong construction of
paths.

• In the case when the user has not moved between two consecutive (based
on the timestamps) points, we remove the second data point.

• We define a speed threshold as the maximum plausible travel speed be-
tween two points. This serves to remove unrealistic (in terms of travel
speed) path segments.

5.4. Datasets 63

• To reduce the overall size of the datasets (and hence, make the compu-
tations on them more efficient) we introduce a distance threshold. Espe-
cially in datasets that have a high temporal resolution and where users
are not constantly on the move, many consecutive data points will only
slightly differ in their position. If the distance between two consecutive
data points is below this threshold, the second point is removed.

• To analyze the coverage of entire paths rather than individual data points,
we need to aggregate a series of data points to a path. We define the time
threshold as the maximum time difference that two consecutive points
can have if they are part of one path. For greater time differences, a new
path is constructed. This mechanism therefore does not remove any data
points but is used to generate paths from data points. Without this pre-
processing step, all data points from one user would belong to one path
only. Instead, the time threshold allows to model a continuous activity
from the user (e.g., traveling between points of interest) during which
we want to measure the cloudlet coverage.

• For the same reason, if the number of data points per path is below a
certain minimum, the entire path is discarded.

• We define the minimum path extension for each path as the minimum
area of the path’s bounding box. This is done to eliminate paths with
insufficient spatial extension (e.g., users who are circulating in a small
area in or around their homes) that would distort the analysis, especially
when comparing different coverage metrics. The minimum path exten-
sion therefore allows discarding user activity that is not relevant to the
coverage analysis, e.g., when a user is staying within the boundaries of
his home environment and therefore covered by the home access point.

5.4.2.a Kraken.me

Kraken.me [SS14] is a tracking framework that records users’ activities and gathers
data from various soft and hard sensors on mobile devices in order to provide per-
sonal assistance. During the development, a user study was conducted for several
weeks using Android phones. Participants of the study were mostly students and
university research staff. For our evaluations, we use a reduced dataset that only
contains the timestamped positions along with a unique user ID. The data is tem-
porally fine-grained with user positions being reported every 30 to 60 seconds on
average.

5.4.2.b Ingress

Ingress8 is a popular mobile AR game and the predecessor of Pokémon Go. Players
visit portals at physical locations in the city. Portals are located at places of inter-
est throughout the city, e.g., prominent buildings, landmarks, or transport stations.
Each player needs to visit and interact with multiple portals, which leads to a con-
stant movement of the player in the real world. Consequently, the users’ positions
are recorded implicitly by their interaction at the portals. In total, there are 724

8https://www.ingress.com/ (accessed: 2019-11-05)

64 Chapter 5. Coverage Analysis of Urban Cloudlets

portals located in the inner city area of Darmstadt. The current state of the game
and player activity is visible on the Ingress Intel Map website9.

We used game data gathered by a crawling tool provided by the authors of
[Fel+18]. The crawler uses an automation tool for web browsers to request changes
in the game state every second. It is important to note that changes include the po-
sition updates from players at portals. Because the user locations are only recorded
at the portals and not between, the data is more coarse-grained in terms of tempo-
ral resolution compared to the Kraken.me data. However, the positions are still a
good indicator for offloading demands related to other applications, since portals
are often located at points of interest in the city.

5.4.2.c CrowdSenSim

Lastly, to extend the number of available data points for our analysis, we use artifi-
cial mobility traces generated with CrowdSenSim [Fia+17], a discrete-event simu-
lator for mobile crowdsensing. CrowdSenSim generates user traces in urban areas
where users roam around the city and randomly take turns onto streets. The sim-
ulator uses a uniform mobility algorithm10 We set the simulation parameters such
that several simulations are carried out for 7 days with 2500 users. The minimum
and maximum travel times per path were set to 30 minutes and 720 minutes, re-
spectively.

5.5 Coverage Metrics

For our analysis of urban cloudlet coverage, we consider four different metrics for
coverage: spatial, point, path, and time coverage. These metrics are depicted in
Figure 5.311 and differ in the data they require to be assessed. Spatial coverage is
completely independent of individual user locations. Point coverage requires a set
of user locations and path coverage an (implicit or explicit) ordering of those. Point
and path coverage allow to more accurately model actual demand patterns because
users are not uniformly distributed throughout an area. Additionally, to compute
the time coverage, user locations must include a timestamp at each location. These
different coverage metrics allow the modeling of different offloading requirements,
depending on the applications and user demands. For instance, point coverage can
model how well singular offloading demands at certain locations can be served,
while path and time coverage model applications that require continuous (with
respect to distance and time traveled) availability of services offered by cloudlets.

5.5.1 Spatial Coverage

Spatial coverage quantifies the spatial extent of the cloudlets’ communication
ranges in relation to the total area. Consequently, spatial coverage gives only an
indication of how well an area is covered by cloudlets and does not consider user
locations. It is defined as the ratio between the union of the communication ranges

9https://www.ingress.com/intel (accessed: 2019-11-05)
10details can be found in the manual of the simulator: https://crowdsensim.gforge.uni.lu/ftp/manual1.1.pdf

(accessed: 2020-05-17)
11the communication ranges in the figure are illustrative and not drawn to scale

5.5. Coverage Metrics 65

Total
Area

Covered
Areas

Spatial
Coverage

A(Covered Area)

A(Total Area)

(a) Spatial coverage

Point
Coverage

| |
| | + | |

Uncovered
Point

Covered
Point

(b) Point coverage

Path
Coverage

 ∑ l(cp)
 ∑ l(cp) + ∑ l(up)

Uncovered Path
Segment (up)

Covered Path
Segment (cp)

up1
up2 cp1 cp2

i

i i

(c) Path coverage

Uncovered
Time Span

Covered
Time Span

Time
Coverage

 ∑ l()
 ∑ l() + ∑ l()

(d) Time coverage

FIGURE 5.3: COVERAGE METRICS†

of cloudlets and the total size of the area, as shown in Figure 5.3(a). Formally,
given a function A that represents the area, spatial coverage can be defined as

Spatial Coverage =
A(covered area)

A(total area)
(5.1)

5.5.1.a k-coverage

Spatial coverage can be generalized to k-coverage. Instead of only considering if an
area is covered by the range of one access point, k-coverage models the simultane-
ous coverage by k access points. Hence, we define k-coverage as follows: An area is
said to be k-covered iff it intersects with the communication ranges of at least k− 1
other access points. The reason one might want to expand the analysis to k > 1 is
to explore the possibility of choosing between multiple cloudlets to optimize user
experience in terms of connection bandwidth or resources. This choice could for
instance be based on application requirements, e.g., a real-time application would
choose the cloudlet with the lowest overall latency. As another example, in areas
where many users are present, one cloudlet might not be sufficient to satisfy all
offloading demands of users within its range.

66 Chapter 5. Coverage Analysis of Urban Cloudlets

EXPLANATION 5.3: SPATIAL k-COVERAGE

k = 1
k = 2
k = 3

Following this definition, our
previously introduced exam-
ple of spatial coverage would
equal to k = 1. This figure il-
lustrates examples for k = 1,
k = 2, and k = 3 at different
intersections of the cloudlets’
communication ranges.

5.5.2 Point Coverage

Point coverage indicates how many recorded location points of a mobile user are
within the communication range of a cloudlet, as depicted in Figure 5.3(b). This
coverage metric can therefore be used to model how many user requests at the
captured distinct points can be served by a cloudlet. Given a set C P of covered
points and a set U P of uncovered points, point coverage is defined as

Point Coverage =
|C P|

|C P|+ |U P| (5.2)

5.5.3 Path Coverage

Since users also move between the distinct points at which their position is recorded,
path coverage (see Figure 5.3(c)) takes into account the paths of users. This allows
us to model use cases where users need continuous connectivity to a cloudlet, e.g.,
when continuously processing video streams. By segmenting the entire paths into
parts that are covered and uncovered, path coverage is defined as the ratio between
the length of covered segments and the total path length. Because the path is not
explicitly recorded but constructed with individual user locations (e.g., captured
periodically by a phone’s GPS receiver), path coverage makes the assumption that
users move on a straight line between two subsequent locations. As a further simpli-
fication, we only consider segments between two covered points. From the previous
definition of uncovered points and covered points, we therefore obtain n covered
path segments (cpi) and m uncovered path segments (upj). Given l as a function
for the length of a segment, we can hence define path coverage as

Path Coverage =

∑n
i=1 l(cpi)∑n

i=1 l(cpi) +
∑m

j=1 l(upj)
(5.3)

5.5.4 Time Coverage

On their paths, users might travel at different speeds, and thus, might be on a path
segment for different durations. Time coverage (sometimes also referred to as tem-
poral coverage) takes this into account, as shown in Figure 5.3(c). This metric works

5.6. Coverage Analysis 67

in a similar way as path coverage, but instead of the length of the path segments
considers their duration. Time coverage is therefore defined as the ratio between
the total time a user is on a connected path segment and the total travel time of the
path. This metric allows to model how long users can be connected to a cloudlet
and therefore—similar to path coverage—can represent the perceived quality of the
service in a more fine-grained way. Given the previous definition of covered and un-
covered segments, and a function t that computes the duration path segments, time
coverage is defined as

Time Coverage =

∑n
i=1 t(cpi)∑n

i=1 t(cpi) +
∑m

j=1 t(upj)
(5.4)

5.6 Coverage Analysis

We now analyze the coverage of urban cloudlets according to the metrics defined
in Section 5.5 and by using the datasets presented in Section 5.4.

5.6.1 Methodology

Development environment and setup: We import the datasets into a PostgreSQL12

relational database. The database system uses the PostGIS extension13 that
enables the representation of spatial data and provides functions that operate
on spatial data (e.g., computing the intersection or union of shapes). We use
several scripts for the data pre-processing and the computation of coverage.
The scripts are written in the Ruby programming language, with some aux-
iliary functions implemented using the PL/pgSQL programming language.
For the pre-processing of the raw data (see Explanation 5.2), we use the
parameters as shown in Table 5.4. We base all following analyses on this
pre-processed subset.

Evaluation scenarios: To reflect different deployment models and economically
motivated scenarios, we define six scenarios (named SC1–SC6) with a vary-
ing number of access points for each type. Table 5.5 summarizes the different
evaluation scenarios. For each scenario, the relative and absolute (in brack-
ets) number of access points per type are shown. The scenarios are meant to
provide an exemplary combination of percentages for the upgrade of access
points, motivated by different underlying deployment models and constraints.
For instance, by incentivizing private individuals to provide computing capa-
bilities at their home routers, the number of devices is likely to increase, as
reflected in SC4. Similarly, network operators and municipalities are likely
to be subject to different cost constraints and economic goals. For instance,
network operators might choose to upgrade their cell towers based on the
average user density or demands at certain points in the city. Subsidies or
regulatory action might be another way to influence the deployment. We re-
flect such variance by choosing 75 % (SC1 and SC2), 50 % (SC3 and SC4),
and 25 % (SC5 and SC6) as the percentages for the cell towers. For the street
lamps, 5 % (SC4), 10 % (SC2 and SC5), 25 % (SC1 and SC3), and 50 % (SC6)

12https://www.postgresql.org/ (accessed: 2019-11-06)
13https://postgis.net/ (accessed: 2019-11-06)

68 Chapter 5. Coverage Analysis of Urban Cloudlets

TABLE 5.4: PARAMETERS FOR DATA FILTERING

Speed threshold 60 kmh−1

Distance threshold 5m

Time threshold 5 min

Minimum path extension 2000 m2

Minimum data points per path 4

TABLE 5.5: EVALUATION SCENARIOS†

Scenario Cellular Routers Street lamps

base stations

SC1 75 % (68) 10 % (3224) 25 % (1433)

SC2 75 % (68) 25 % (8060) 10 % (573)

SC3 50 % (45) 25 % (8060) 25 % (1433)

SC4 50 % (45) 50 % (16 120) 5 % (286)

SC5 25 % (22) 25 % (8060) 10 % (573)

SC6 25 % (22) 10 % (3224) 50 % (2867)

of all access points are chosen. Given the lack of reference deployment mod-
els today, we argue that these scenarios allow for a first meaningful analysis
of cloudlet coverage.

5.6.2 Spatial Coverage

Methodology. First, we investigate spatial coverage for the individual access point
types without considering mobility traces of users. Figure 5.4 shows the results
for cellular base stations (Figure 5.4(a)), routers (Figure 5.4(b)), and street lamps
(Figure 5.4(c)). We assume a unit-disk model for the communication ranges—a
common model for coverage in the domain of wireless sensor networks [Wan11;
LC11]—and show the results for different realistic communication ranges for each
type of cloudlet. For each number of access points (in steps of 10 percent), the
corresponding access points are randomly chosen. Besides access points located
inside the inner city boundary, we also include access points whose communication
ranges span across that boundary. Each experiment is run five times and we plot the
average coverage ratios. While the resulting plots also display the corresponding
error bars, they are very small for routers and lamps. This is because their commu-
nication ranges are much smaller and they are more spatially distributed compared
to cell towers. Therefore, overlaps in the communication ranges (that add to the
variance of overall coverage when randomly selecting access points) are less likely.
In contrast, cell towers have a bigger communication range. Thus, when randomly
selecting access points, overlaps are more likely, and the gain in coverage might
vary more significantly.

Results of the spatial coverage analysis. From the results, we can already ob-
serve the general trend that a rather small fraction of upgraded access points is

5.6. Coverage Analysis 69

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 20 30 40 50 60 70 80 90 100

Co
ve

ra
ge

 r
at

io

Percentage of selected access points

r = 300m
r = 400m

r = 500m
r = 600m

r = 700m
r = 800m

r = 900m
r = 1000m

(a) Cellular base stations

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 20 30 40 50 60 70 80 90 100

Co
ve

ra
ge

 r
at

io

Percentage of selected access points

r = 10m
r = 20m

r = 30m
r = 40m

r = 50m
r = 60m

r = 70m
r = 80m

(b) Routers

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10 20 30 40 50 60 70 80 90 100

Co
ve

ra
ge

 r
at

io

Percentage of selected access points

r = 10m
r = 20m

r = 30m
r = 40m

r = 50m
r = 60m

r = 70m
r = 80m

(c) Street lamps

FIGURE 5.4: ANALYSIS OF SPATIAL COVERAGE†

70 Chapter 5. Coverage Analysis of Urban Cloudlets

sufficient to provide good spatial coverage. This is especially true for routers be-
cause of their sheer number. Assuming a rather conservative communication range
of 40 m, already 20 percent of routers lead to almost 60 percent spatial coverage.
For street lamps, the numbers are smaller because we have fewer lamp posts com-
pared to routers. The same 20 percent result in about 30 percent coverage for street
lamps.

The increase in coverage for routers and street lamps is slower from a certain
point on because with increasing numbers, we get more spatial overlap in the com-
munication range and, thus, less gain in overall coverage. In comparison, there are
far fewer cell towers. However, cell towers have a much greater communication
range today. Figure 5.4(a) shows three consequences of this. First, the coverage
is lower for a small percentage of selected access points compared to routers and
lamps. Second, adding more cell towers keeps increasing the overall coverage more
significantly compared to routers and lamps, and third, intersections in the commu-
nication ranges lead to high values in the error bars for small percentages.

Spatial k-coverage. We now examine spatial k-coverage with the scenarios de-
fined earlier. We again assume a unit-disk model for the communication ranges
and select them randomly between the following ranges. For cellular base stations,
the communication ranges are randomly chosen within a range of 300 to 1000 me-
ters. Some works suggest an average communication range between 50 and 60
meters for WiFi routers [Mot+13; Bur+15]. However, in our urban scenario, this
might vary greatly (e.g., due to obstacles or different building structures); there-
fore, for cloudlets on routers, we choose a range between 20 and 70 meters. In
our analysis, we assume that in the near future, cloudlets on street lamps will be
equipped with WiFi for communication. Because the wireless signal from the ac-
cess points on street lamps is less obstructed compared to routers, we increase the
range to 30–80 meters. Note that the lower value of the range is disproportionally
higher because we assume the immediate surroundings of the lamp to be free of
large obstructions (e.g., because in the deployment, the access points are mounted
at a certain height). We use a uniform continuous distribution for all communica-
tion ranges and run each experiment 5 times. The results are shown in Figure 5.5.
For each scenario, the bars represent the coverage per access point type.

In Figure 5.5(a) we consider 1-coverage, i.e., we assume an area to be covered if
it is within the range of at least one access point. For 1-coverage, one can therefore
think of this figure as a combination of the values shown in Figures 5.4(a)–5.4(c).
As with our previous results, we see that a relatively small number of access points
already provides good coverage. However, this significantly differs for the different
types of access points. For instance, using only a small number of street lamps (as
in scenario SC4) is clearly not viable in practice because of low coverage. Figures
5.5(b) and 5.5(c) show the results for k = 2 and k = 3, respectively. The biggest
drop in coverage for increased values of k occurs with the street lamps, since they
are spaced out more evenly and therefore, overlaps in the communication ranges oc-
cur less often. Since the communication ranges of cellular base stations and routers
often overlap, we see that for k = 2 (Figure 5.5(b)) we still get good coverage.
For k = 3 (Figure 5.5(c)), we can observe that routers lose the least coverage of all,
possibly because of their generally higher degree of overlap. In future work, instead
of randomly selecting access points, one might want to optimize the selection for a
desired target value of k.

5.6. Coverage Analysis 71

 0

 20

 40

 60

 80

 100

SC1
SC2

SC3
SC4

SC5
SC6

%
 c

ov
er

ag
e

Scenarios

Cellular Base Stations Routers Street Lamps

(a) k = 1

 0

 20

 40

 60

 80

 100

SC1
SC2

SC3
SC4

SC5
SC6

%
 c

ov
er

ag
e

Scenarios

Cellular Base Stations Routers Street Lamps

(b) k = 2

 0

 20

 40

 60

 80

 100

SC1
SC2

SC3
SC4

SC5
SC6

%
 c

ov
er

ag
e

Scenarios

Cellular Base Stations Routers Street Lamps

(c) k = 3

FIGURE 5.5: SCENARIO-BASED EVALUATION OF SPATIAL k-COVERAGE††

72 Chapter 5. Coverage Analysis of Urban Cloudlets

Summary of the spatial coverage analysis & outlook. From the analysis of spa-
tial coverage, we can already see that deploying cloudlets is feasible for large-scale
coverage within a city and that only a fraction of access points are required to
achieve reasonable coverage. We expect the overall coverage ratio to be even better
when taking into account the cover metrics that are based on mobility traces, i.e.,
point, path, and time coverage.

5.6.3 Point, Path, and Time Coverage

Methodology. While the results of Section 5.6.2 give an indication of how well an
area is covered, one might argue that this does not necessarily represent the cloudlet
coverage a mobile user experiences, since actual user locations are not uniformly
distributed throughout the area. In addition, users are mobile and change their
location frequently. Therefore, we now consider the mobility traces described in
Section 5.4.2 and evaluate their point, path, and time coverage (as defined in Sec-
tion 5.5). This analysis allows for more realistic insights regarding future offload-
ing demands that could be served by cloudlets. For the communication ranges, we
again use a uniform continuous distribution and a unit-disk model, randomly se-
lecting within the following values according to the access point type: cellular base
stations 300–1000 m, WiFi routers and street lamps 10–80 m.

Determining the combined coverage of access points. Figure 5.6 plots the re-
sults for the three datasets. In each of the plots, we evaluate the point, path, and
time coverage per scenario. The individual bars are stacked to represent the com-
bined coverage we obtain from multiple types of access points. The stacking rep-
resents the additional coverage we gain by adding the subsequent type of access
point. We assume that as the first type of access point, street lamps will be chosen,
since—giving the underlying business model of municipalities providing services to
their citizens—they will incur the lowest costs for users. Furthermore, because most
of our location traces are not inside buildings but outside, street lamps are likely to
be closest and therefore the best-connected cloudlets for users in many cases. The
next part of the bar represents how much coverage routers add to points, paths, or
time spans not covered by those lamps. Since our model assumes cell towers to be
the most expensive type, they are used last to fill the gap that cannot be covered by
other types of access points. It is important to note that the height of the stack, i.e.,
the overall coverage would not change if we were to use another order of access
points (say, if we would first assume coverage by routers and then add street lamps
and cell towers).

Differences between coverage metrics. Surprisingly, the variance between the
different types of coverage (i.e., path, point, and time coverage) is very small. While
there are variances within a dataset with respect to the distance and difference in
times between the data points, this averages out, i.e., we get nearly identical values
for the different metrics of coverage. For datasets with a coarser temporal resolu-
tion, such as Ingress, we can, however, observe a lower time coverage compared to
the other metrics.

Overall, this result shows that even if we have limited data (e.g., sparse location
data for parts of a user’s movement), this averages out over the whole dataset and
hence, users will most likely also have a connection to a cloudlet for most of the

5.6. Coverage Analysis 73

 0

 20

 40

 60

 80

 100

path
point

time
path

point
time

path
point

time
path

point
time

path
point

time
path

point
time

%
 c

ov
er

ag
e

Scenarios

Cellular Routers Lamps

SC6SC5SC4SC3SC2SC1

(a) Kraken.me

 0

 20

 40

 60

 80

 100

path
point

time
path

point
time

path
point

time
path

point
time

path
point

time
path

point
time

%
 c

ov
er

ag
e

Scenarios

Cellular Routers Lamps

SC6SC5SC4SC3SC2SC1

(b) Ingress

 0

 20

 40

 60

 80

 100

path
point

time
path

point
time

path
point

time
path

point
time

path
point

time
path

point
time

%
 c

ov
er

ag
e

Scenarios

Cellular Routers Lamps

SC6SC5SC4SC3SC2SC1

(c) CrowdSenSim

FIGURE 5.6: SCENARIO-BASED COVERAGE ANALYSIS OF PATH, POINT, AND TIME COV-
ERAGE FOR THE MOBILITY TRACES†

74 Chapter 5. Coverage Analysis of Urban Cloudlets

time along their path. This provides an interesting insight for the planning of city-
scale cloudlet infrastructures in the case where there is only limited data available
to estimate the required demands. For instance, data protection laws might restrict
the linking of entire user paths with their timestamps. Our analysis shows that
regardless of what kind of data is available, each of the three coverage metrics
can be used to estimate the resulting coverage for mobile users with offloading
demands.

Comparison with spatial coverage. Looking at the overall coverage across the
datasets, we see that the coverage is higher compared to the previous spatial cov-
erage analysis because spatial coverage also includes areas that are less likely to
be populated by people, e.g., in-between factory buildings or in more sparsely pop-
ulated residential areas. This is validated by the fact that for the CrowdSenSim
dataset (Figure 5.6(c)), which represents generated movement traces rather than
real ones, the overall coverage is lower compared to Kraken.me (Figure 5.6(a))
and Ingress (Figure 5.6(b)). Even though the CrowdSenSim traces are generated
on walkable paths, those are more likely to be in areas with limited coverage (e.g.,
because they are within less populated areas of the city). Recall that in all scenar-
ios, only a certain percentage of each type of access point infrastructure is available.
This explains why when using the CrowdSenSim traces in scenarios with a small
percentage of cell towers (SC5 and SC6), we do not achieve full coverage compared
to the other datasets. Overall, however, our analysis showed that with only a subset
of available access point infrastructures, we are able to provide city-wide coverage.

Discussing the different access point types. From the results we could observe
that, in general, when combining the different rather small percentages for the
individual types, we get high overall coverage ratios. For instance, for the first
scenario (SC1) of the Kraken dataset, selecting only 25 % of street lamps leads to
almost 50 % of coverage for that type alone. Adding routers, which are present in
much greater number, the coverage surpasses 90 %. This result holds true across
all investigated datasets and coverage metrics.

Naturally, the percentage of lamps that is selected first has the highest impact
on the distribution of access point types to their contribution to the coverage. For
the Ingress data, the coverage values obtained only by the street lamps are slightly
higher. We attribute this to the fact that different users congregate at distinct lo-
cations, i.e., where the game portals are located). Even for more fine-grained data
(in the sense of capturing more data points along a user’s path) like user locations
from Kraken.me, we see that street lamps alone already achieve high coverage. As
an example, scenarios SC1, SC3, and SC6 consistently lead to a coverage of well
over 40 %. Routers are always able to fill up the coverage to over 90 %, except
for the artificially generated traces because those traces are limited to streets, and
therefore, fewer routers might be able to reach them. We can further observe that
cell towers, which are likely to be most expensive and distant to the user, are still
useful in filling coverage gaps and should still be considered in view of alternatives,
such as local processing on the mobile device itself or cloud offloading.

5.7. Conclusion 75

5.7 Conclusion

In this chapter, we have examined the question of whether it is feasible to upgrade
existing urban infrastructures to host cloudlets for a city-wide coverage. Specifi-
cally, we proposed placing cloudlets in an urban space using existing access point
infrastructures, namely, cell towers, routers, and street lamps. We described the
characteristics of these different types of infrastructure and gathered a large dataset
of real-world data for access point locations and mobility traces. To analyze the cov-
erage of urban cloudlets, we used these datasets and defined four different metrics
for coverage. The results of this coverage analysis demonstrated that by using only
a relatively small subset of access points present on infrastructure to host cloudlets,
we are able to achieve a city-wide cloudlet coverage.

This is especially true for the coverage analysis of the mobility traces, where mo-
bile users are within the communication range of a cloudlet-enabled access point
most of the time. The results of this analysis enable different stakeholders (e.g., mu-
nicipalities and network operators) to estimate the number of cloudlets required to
achieve a certain degree of coverage and hence, can serve as a planning tool for fu-
ture deployments. For existing deployments, it can identify areas that lack coverage
(globally or for individual access point types or application traces). The developed
method can serve as a basis for future analysis based on other data. For instance,
instead of a unit-disk communication range, more sophisticated models for wireless
signal propagation could be used to obtain a more realistic coverage estimation. As
an example, for cell towers these models would come from measurements carried
out by the network operators. Today, unfortunately, this kind of data is hard to
obtain for public usage due to confidentiality reasons.

Our analysis demonstrated the feasibility of leveraging urban cloudlets. It is
therefore the basis to examine the placement, i.e., to answer the question where
exactly the cloudlets should be placed. In the following Chapter 6, we will address
precisely this problem.

CHAPTER 6

Urban Cloudlet Placement

Chapter Outline
6.1 Introduction and Problem Statement 77

6.2 Related Work . 78

6.3 System Model . 80

6.4 Placement Strategy . 83

6.5 Evaluation . 86

6.6 Conclusion and Future Work 93

6.1 Introduction and Problem Statement

In the previous Chapter 5, we motivated the usage of existing urban infrastruc-
tures for the placement of cloudlets. We showed that placing cloudlets on those
infrastructures can potentially achieve a high coverage. We demonstrated this with
real-world data and four different coverage metrics. Furthermore, the methodology
we presented can serve as a planning tool, e.g., to estimate the number of required
access points for a certain percentage of coverage, or to identify uncovered areas.

However, the question remains of where to place those cloudlets, i.e., which
infrastructure locations to equip with a cloudlet to serve the users’ demands. Up-
grading every access point with a cloudlet may not be feasible economically, and
hence, decisions to equip a subset of all available access points have to be made.
This problem is challenging for two reasons. First, the costs and the quality of ser-
vice form a natural tradeoff. The quality of service can, for instance, be modeled
as the amount of offloading demands that can be served by cloudlets. Second, as
we have introduced in Section 5.2, the access point infrastructures we consider are
highly heterogeneous, making the placement problem challenging. This chapter
addresses this problem and proposes a strategy for the placement of heterogeneous

77

78 Chapter 6. Urban Cloudlet Placement

urban cloudlets. For the placement decision of cloudlets in this chapter, we consider
heterogeneity in three aspects:

(i) COSTS | The different potential operators of a city cloudlet infrastructure and
the heterogeneous hardware that can be used for cloudlets will lead to dif-
ferent cost structures and business models under which they operate. Our
problem model (Section 6.3) accurately reflects the real-world economics of
such deployments by capturing both fixed and variable costs.

(ii) RESOURCES | Besides economic considerations, the physical environment of
the access points dictate what type of cloudlet hardware can be placed at
a given access point. This can range from small, embedded computers to
server-grade hardware comparable to data centers.

(iii) COMMUNICATION RANGE | The different types of wireless access technologies
have varying communication—and hence—coverage ranges. For instance,
cell towers mounted on buildings have a higher coverage rate compared to
WiFi routers.

After reviewing related work in Section 6.2, we define our system model for
the placement problem in Section 6.3. Following these definitions, this chapter will
address the cloudlet placement problem by proposing a placement strategy (Sec-
tion 6.4) that is suitable for the described heterogeneous scenario. The proposed
strategy runs in polynomial time and, hence, makes the problem tractable for large
instances. Furthermore, it is able to trade the quality of service for costs, depend-
ing on different underlying economic considerations. Using the same real-world
data introduced in Section 5.4, we will show how our approach outperforms two
baseline strategies for placement (Section 6.5).

6.2 Related Work

Placing cloudlets on urban infrastructures faces the challenge of heterogeneity with
regards to coverage, costs, and resources. In general, placement strategies can
be optimized towards different metrics, e.g., the overall costs, or how much user
demand can be served. In the scenario we outlined, placement strategies need to
select existing locations for the placement instead of defining an optimal location.
This is because we want to reuse existing infrastructure in order to minimize costs
incurred by building new access points.

While there is abundant research on the placement of (virtualized) computing
resources, both for homogeneous environments like data centers [MPZ10; PY10]
and in the context of cloudlets and Edge Computing (see Section 8.2), the ques-
tion of where to place cloudlets on available urban infrastructures has rarely been
examined. Because urban infrastructures are highly heterogeneous, most existing
placement strategies are unable to model the inherent tradeoffs (e.g., of costs versus
coverage) in such environments. Consequently, they are not able to make sensible
placement decisions.

Cloudlet placement. Three works [Xu+15; Xu+16; JCL17] study the placement
of cloudlets in wireless metropolitan area networks (WMANs) and jointly propose
solutions for the user-to-cloudlet allocation problem, but they do not consider the

6.2. Related Work 79

costs of cloudlets. Fan and Ansari [FA17] consider the costs for renting a hosting
facility and cloudlet servers but their model does not capture variable costs per
request—a crucial decision factor for the placement, given that the infrastructure
is owned and operated by different stakeholders with varying business models (see
Section 3.4). Similarly, Ren et al. [Ren+18] consider costs but assume that each
cloudlet is able to meet all request demands within a region. We argue that this
is not a realistic assumption, given the vast number of users and Edge Computing
applications in an urban setting.

Xu et al. [Xu+15; Xu+16] present a greedy heuristic to minimize the average
access delay of mobile users to a cloudlet. Ma et al. [Ma+17] operate on a similar
model but use Particle Swarm Optimize (PSO) as a metaheuristic to outperform
greedy approaches. Jia et al. [JCL17] devise two algorithms to minimize the re-
sponse time: Heaviest-AP First (HAF) and Density-Based Clustering (DBC). The for-
mer places cloudlets on the access points where user workloads are the heaviest,
while the latter places cloudlets according to user-dense regions.

The authors in [SBD18] analyze a large dataset of cell tower locations in the
US. Without considering the costs or computing resources, they investigate the dis-
tance reduction to data centers when cell towers of a certain category—classified
according to the estimated residential population—are upgraded with micro data
centers.

Yao et al. [Yao+17] investigate the cost-aware deployment of cloudlets that are
heterogeneous with respect to costs and resource capacities. They adopt a greedy
strategy that iteratively chooses cloudlets with the minimum unit cost of resources.
Compared to our model, they make assumptions that we argue are not realistic, e.g.,
that there is no spatial overlap in the deployment of cloudlets and that the entire
area is covered by access points. Even though the authors consider heterogeneous
cloudlets, they are not linked to real-world infrastructure. In contrast, we consider
three different types of infrastructure, each with specific characteristics.

Usage of WiFi or cellular access points. Caselli et al. [CPS15] focus on the plan-
ning of a cloudlet network that consists of cellular base stations only. Bulut et al.
[BS13; BS16] have studied the deployment of WiFi access points; however, they
consider only the access dimension and not the actual computations. This means
that in their model, there is no capacity constraint for the placement of an access
point. Furthermore, the authors do not model the cost of the deployment and as-
sume that access points can be freely placed—the latter assumption can also be
found in [Yin+17]. Mohan et al. [Moh+18] follow a hybrid approach where exist-
ing edge cloudlets are considered and new ones are freely placed. While the authors
consider both WiFi and cellular access, they fail to model resource heterogeneity for
different types of cloudlets. In contrast to that, we assume that we cannot influence
the placement of the access points but instead have to choose a subset of the exist-
ing ones while taking into account the costs of cloudlet placement. In [BS13], the
authors present a greedy algorithm for the access point placement that maximizes
the offloading ratio, i.e., how much overall offloading can be achieved. This met-
ric is extended to consider the satisfaction of individual users in [BS16]. Besides
placing access points in areas with high overall demand, the presented placement
strategy tries to enable offloading for each user equally.

80 Chapter 6. Urban Cloudlet Placement

Choosing the best access point. The work of Yang et al. [Yan+16] presents a
method to rank access points in order to determine on which access points cloudlets
should be placed. Their ranking function only considers the network features of the
access point and ignores the cost dimension. Furthermore, the network model in-
sufficiently reflects the characteristics of Edge Computing. For instance, the authors
consider a metric of closeness centrality, defined as the average distance from an ac-
cess point to all other access points. Zhao et al. [Zha+18e] also consider this metric
besides others. Given that ideally in edge deployments, the flow of data is limited to
the distance from the end device to the closest cloudlet and there is no dependency
on other computing resources, we believe this metric does not accurately represent
a placement utility in a typical Edge Computing scenario.

Summary. In conclusion, we could identify two major drawbacks of existing
works in the domain of cloudlet placement: (i) failing to capture the relevant
dimensions of heterogeneity for urban cloudlets (i.e., fixed and variable costs,
coverage, and available computing resources), and (ii) making assumptions that
are unrealistic for a real-world deployment (e.g., being able to freely place access
points). Furthermore, no previous works have used extensive real-world data to
evaluate their findings. In contrast, we jointly use location data of urban infrastruc-
ture and user traces captured from mobile applications (see Section 5.4) for the
evaluation of our placement algorithm.

6.3 System Model

6.3.1 Basic Definitions

We consider a set AP = {ap1, . . . , apn} of n access points located in a 2-dimensional
plane. Each access point ap ∈ AP is of one type ti = T ype(ap), ti ∈ {t1, . . . , tn} and
has a unit-disk communication range of radius rap. Following our dataset of urban
cloudlets (see Section 5.4.1), we use cellular base stations, WiFi routers, and smart
street lamps as access point types in this chapter. If an access point is chosen to be
upgraded to host a cloudlet, it can provide a certain amount of resources Rap, which
for instance, can be modeled as the available CPU cycles of the cloudlet hardware.
Our model reflects both fixed expenses and variable operational costs. This is a
common abstraction found in economics (often termed CAPEX1 and OPEX2). In
detail, we consider the following two costs:

(i) FIXED COSTS | A fixed cost of C F ixap occurs when an access point is upgraded.
This could either be the cost of upgrading hardware or fixed costs for running
the cloudlet for a certain amount of time, e.g., the costs for energy.

(ii) VARIABLE COSTS | Variable costs of CVarap occur per unit of computing re-
sources used on the access point’s cloudlet.

We introduce a binary decision variable xap ∈ {0, 1} to model the placement of
cloudlets on access points. xap = 1 if a cloudlet is placed on access point ap ∈
AP, 0 otherwise. From the mobility traces, we have m user locations, denoted as
U = {u1, . . . , um}. Each user requests a workload wu. We further define d(ap, u)

1capital expenditures
2operational expenditures

6.3. System Model 81

as the Euclidean distance between an access point ap and a user location u. We
characterize the association of a user to a cloudlet-enabled access point by yu,ap ∈{0, 1}. If user u offloads the computations to a cloudlet present at access point ap,
yu,ap = 1, otherwise yu,ap = 0.

A placement p is therefore defined as the assignment of the variables xap and
yu,ap. We denote all possible placements with �. Our placement algorithm deter-
mines a placement for a fixed number of K cloudlets that are given as input, i.e.,

∑
ap∈AP

xap = K , K ∈ �. (6.1)

Placements are subject to a number of constraints. Obviously, users can only make
use of a cloudlet at an access point if they are within its communication range and
the access point has been equipped with a cloudlet, hence,

d(ap, u)≤ rap∀u ∈ U ,∀ap ∈ AP : yu,ap = 1 (6.2)

and
xap ≥ yu,ap∀u ∈ U ,∀ap ∈ AP. (6.3)

We further assume that user demands cannot be fragmented. We make this as-
sumption because fragmenting demands may result in other overhead, such as syn-
chronization between the cloudlets, if parts of the same application are offloaded
to more than one cloudlet. Hence, as a simplification, all workload demand from
one user is offloaded to exactly one cloudlet and cannot be divided:

∑
ap∈AP

yu,ap = 1,∀u ∈ U (6.4)

Placement decisions also need to consider the resource constraints on the cloudlets.
Because user-to-cloudlet assignments should not overload the cloudlet, we have

∑
u∈U

yu,ap ·wu ≤ Rap,∀ap ∈ AP. (6.5)

To evaluate how good a placement decision is, we take into account two factors:
the costs and the overall quality of service. Costs include the fixed cost for deploying
a cloudlet as well as the variable cost for each unit of resources that is offloaded.
Hence, the total costs of a placement can be formulated as

C(p) =
∑

ap∈AP

C F ixap · xap

︸ ︷︷ ︸
F ixed Costs

+
∑

ap∈AP

∑
u∈U

yu,ap · CVarap ·wu

︸ ︷︷ ︸
Variable Costs

. (6.6)

We model the quality of service as the ratio of how much user demand can be
offloaded to the cloudlets, i.e.,

Q(p) =

∑
u∈U

∑
ap∈AP yu,ap

m
. (6.7)

Compared with our previously introduced definitions of coverage (see Section 5.5),
this is a variant of point coverage. However, for a point to be covered, in addition

82 Chapter 6. Urban Cloudlet Placement

TABLE 6.1: NOTATION OF THE PLACEMENT PROBLEM†

AP Set of access points

n Total number of access points

Rap Available resources after upgrading the access point

rap Radius of the unit-disk communication range

C F ixap Fixed cost for deploying and/or operating a cloudlet at the access point

CVarap Variable cost for using one unit of resources

xap Binary decision variable to indicate cloudlet deployment

U Set of user locations

m Total number of user locations

wu Workload requested at user location

d(ap, u) Euclidean distance between access point and user

yu,ap Binary decision variable for user-to-cloudlet assignment

C(p) Cost of a placement

Q(p) Quality of service of a placement

to being located within the connectivity range of a cloudlet, the computational de-
mands of the user at that point must be met, i.e., there must be a cloudlet with
enough (remaining) computing resources in range. Given these definitions, the
overall utility of a placement is defined as

U til i t y(p) = α · max(C(�))− C(p)
max(C(�))−min(C(�)) + (1−α) ·Q(p), (6.8)

where α ∈ [0,1] is a weighting factor that tunes the impact of the two metrics
C(p) and Q(p) on the overall utility of the placement. Practically, this allows to
model different deployment scenarios, where either costs or the quality of service
might be more important. As an example, for a value of α = 0.2, the costs would
account for 20 % and the quality of service for 80 % to the overall utility. Setting α
to 0.5 would give equal weight to both factors. max(C(�)) and min(C(�)) denote
the maximum and minimum possible costs of a placement. Note that we negate
the cost factor in order to represent lower costs by a higher utility value. Table 6.1
summarizes the notation of our model.

6.3.2 Problem Definition

Given the above definitions, we define our cloudlet placement problem (CPP) as
follows: Place K (K ∈ �) cloudlets on access points according to the following
optimization problem:

max U til i t y(p)
s.t. (6.1), (6.2), (6.3), (6.4), (6.5)

xap ∈ {0, 1},
yu,ap ∈ {0, 1}, ∀ap ∈ AP, ∀u ∈ U .

Our goal is therefore to maximize the offloading ratio, i.e., the number of users that
will be able to offload computations to cloudlets while making cost-aware place-
ment decisions for cloudlets on the access points. Furthermore, we need to be able

6.4. Placement Strategy 83

to compute placements for large problem instances. However, doing so is not prac-
tically feasible if we want to find the optimal solution for the CPP. We can model the
CPP as a combination of two well-known problems: The Metric Facility Location and
k-Median problem. The metric facility location problem describes the problem of
finding a minimum-cost solution for opening facilities that are connected to cities.
Costs occur for opening a facility and for the connection of a facility to a city. The k-
median problem is a variation in which there are no costs for opening a facility and
the number of opened facilities is upper-bounded by k. Jain and Vazirani [JV01]
have shown that these problems are NP-hard. By setting cities to be users and facil-
ities the cloudlets that need to be placed, we can construct an equivalent problem.
The costs for opening a facility translate to the fixed costs for placing a cloudlet on
an access point, while the costs for connecting a facility to a city can be mapped to
the variable costs that have to be paid for processing user demands at the cloudlet.
Hence, we can conclude that the CPP is also NP-hard. We will show in Section 6.4.1
that nonetheless, our proposed approach finds a solution in polynomial time.

6.4 Placement Strategy

To make the cloudlet placement problem more tractable, we propose GSCORE (Grid-
Score), a cloudlet placement algorithm described in this section. The main idea of
GSCORE is to perform cloudlet placement locally instead of on a global scale. To do
so, we consider placement decisions on the level of grid cells, which divide the entire
area. Grid cells may contain several access points on which cloudlets can be placed.
Depending on the size of the grid cell, the communication range of an access point
might span over multiple grid cells. Furthermore, to reduce complexity, we consider
only aggregated demands in each grid cell, i.e., the sum of all user demands.

We divide the area to be covered by cloudlets into grid cells G = {g1, . . . , g j}
with uniform edge length gs. Based on the user locations and the request size of
each user, we can then compute the total size of the requests per grid wg =

∑
wu

for every user u located in that grid cell. Figure 6.1 shows an example of an area
in the city that is divided into 9 grid cells g1, . . . , g9 (|G| = 9). It illustrates work-
loads w1, . . . , w4, represented by data points of user locations in that grid cell. In
real-world deployments, the request sizes of the grids might be determined by mea-
surements from network providers that are able to estimate the number of users and
the offloading traffic they generate. Our algorithm operates solely on the knowl-
edge of the individual grid cells. For each grid cell, a local decision is made to place
a certain number of cloudlets on the available access points in that grid cell. First,
we make a decision on where to place cloudlets and later assign the individual user
requests to the cloudlets to evaluate the system utility as defined earlier.

(i) CLOUDLET PLACEMENT | The pseudocode of GSCORE is shown in Algorithm 1.
Its main loop iterates over the grid cells until the desired number K of
cloudlets have been placed (lines 1–27). The cells are traversed in decreas-
ing order of request sizes, i.e., we begin with the cells that have the highest
request sizes wg (line 2). Next, for each of the access points located in that
cell, a score is computed (lines 4–12). The score reflects the tradeoff between
cost considerations and quality of service. A cost-to-resource ratio cr (line
5) is computed and a cost factor f actorcr (line 8) normalizes the costs-to-
resource ratio, taking into account the maximum and minimum cr values of

84 Chapter 6. Urban Cloudlet Placement

g1

g4 g6g5

g3

g8 g9g7

g2

gs

• w1=2

• w2=1

• w3=4
• w4=1

factorarea = 0.2 Grid Cell

|G| = 9

Rap= 4

factorcapacity =

Rap 4— = — = 0.5wgh
 8

wgh
= Σwu= 8

FIGURE 6.1: GRID MODEL FOR THE CLOUDLET PLACEMENT PROBLEM

all access points. Access points with higher resources at the same costs will
therefore be ranked higher. For this cost factor, we assume an upper bound
in the sense that each access point’s capacity will be fully utilized.

Each access point covers a fraction of the grid cell’s area (line 6) and is able
to serve a fraction of this cell’s workload demands (line 7). Both of these
factors can have a maximum value of 1, in case the entire area is covered and
all workloads can be served. The factor for the quality of service f actorQoS
(line 9) combines these two factors and therefore, reflects how much of the
grid area is covered by an access point’s communication range and what ratio
of the grid’s request demands can be satisfied by that access point. Note that
we again only consider these factors on a grid cell level, i.e., a router with a
larger communication range that covers an entire cell might have the same
value for f actorarea as a cell tower, even though the latter in reality spans
over multiple grid cells. Similarly, at this point, we disregard how many users
actually are in the range of the access point (as they could be within the grid
cell but not within the access point’s communication range), and hence, how
much workload could be served. We follow this approach because iterating
over every individual data point would greatly increase the complexity of the
placement decision. By selecting appropriate grid sizes in the evaluation, we
will show that this approach is a reasonable approximation. Both factors can
be weighted with a parameterα ∈ [0,1], in order to be more sensitive towards
either costs or quality of service (line 10).

Figure 6.1 shows an illustrative example of how the capacity factor and area
factor are computed in our grid model. In the given example, the street lamp
is located in g5. In that grid cell, it is able to serve half of the total workload
requested in that cell. Its communication range is not limited to g5, but spans
across other cells. For example, its value for f actorarea is 0.2 in grid cell g2.

From our raw user data, we could observe that the number of users per grid—
and hence the generated request sizes—are not uniformly distributed. In-

6.4. Placement Strategy 85

Algorithm 1 GSCORE †

1: while
∑n

i=0 xi < K do

2: gh ← G.getHighestRequestSize()
3: S = �
4: for ap ∈ AP located in gh do

5: cr ← C F ixap+CVarap ·Rap

Rap

6: f actorarea ← |A(ap)∩A(gh)||A(gh)|
7: f actorcapaci t y ← Rap

wgh

8: f actorcr ← max(cr)−cr
max(cr)−min(cr)

9: f actorQoS ← f actorarea+ f actorcapaci t y

2

10: scoreap ← α · f actorcr + (1−α) · f actorQoS

11: S ← S ∪ {scoreap}
12: end for
13: n← �ln(wgh

w̄g
) + ln(gs) +

K
|G| �

14: placedCap ← 0
15: for k ∈ [0, numToPlace] do
16: scoreap ← max(S)
17: xap = 1
18: placedCap ← placedCap+ Rap
19: S ← S \ {scoreap}
20: AP ← AP \ {ap}
21: end for
22: if (wgh

− placedCap)> 2 · w̄g then
23: wgh

← wgh
− (placedCap · ln(wgh

))
24: else
25: wgh

← wgh
− placedCap

26: end if
27: end while

stead, we see few grid cells with substantially higher request sizes than the
average. This will result in many access points being placed in those cells,
even if they are not enough to satisfy the total user demands of that grid. At
the same time, this reduces the number of (potentially more cost-effective)
access points that could be placed for satisfying a larger offloading ratio in
other grids. To mitigate this behavior, we compute the number of cloudlets
to be placed in a grid cell, as shown in line 13 by the variable n. This for-
mula normalizes the impact of cells with exceptionally high request sizes by
taking ln(

wgh
w̄g
). This normalization factor was determined empirically, given

the distribution of requests across the grid cells. Note that this factor can be
adapted to other datasets with different request patterns. However, we argue
that in practice, it is in general realistic to assume non-uniform request sizes
across grid cells, due to, e.g., users congregating at popular public places. In
addition, we also factor in the size of the grid cell (in the sense that we allow
more cloudlets to be placed in larger grids) and the ratio of K to the number of

86 Chapter 6. Urban Cloudlet Placement

grid cells. According to this function, the corresponding number of cloudlets
with the highest scores will be added to the grid cell (lines 15–21).

After having placed the corresponding number of cloudlets in a grid cell, its
workload demand is adjusted in the following way: We assume each cloudlet
will be used to full capacity. In addition, we again take into account the char-
acteristics of the request size distribution to ensure that grid cells containing
a smaller workload will also be iterated over. Hence, if the workload of a
grid remains larger than two times the average workload (line 22), we adjust
the new workload request estimation of the grid by multiplying the placed
capacity of the cloudlets with the logarithm of the original request demand
(line 23). Similar to the normalization factor for the number of access points
to choose in line 13, we determined this value empirically.

(ii) USER-TO-CLOUDLET ASSIGNMENT | To compute the utility value (see Equa-
tion (6.8)), we now assign the requests of individual users with the following
strategy: since the fixed costs have already been determined by the place-
ment strategy, for each request, we choose the cloudlet with the lowest vari-
able costs per resource unit that is within the range of the user. Note that
for future work, other more sophisticated strategies could be used (see Sec-
tion 6.6).

6.4.1 Complexity Considerations

In Section 6.3.2, we stated that the CPP is NP-hard. Contrary to that, our proposed
placement strategy runs in polynomial time. The outer while-loop (lines 1–27) runs
at most K-times. Within each iteration of the loop, we have to traverse the entire
set of (remaining) access points to compute the score for the placement candidates
(lines 4–12), giving a total (worst case) complexity of O(|AP|). In addition, the
second inner loop (lines 15–21) runs n-times. All other operations within the loops
run in constant time O(1). This also applies to the selection condition in line 4 that
includes only access points located in the grid gh. Spatial indices in the database can
be used to retrieve access points that are within a geographic region in linear time
[Ngu09]. Hence, the total time complexity of GSCORE is given as O(K · (|AP|+ n)).

6.5 Evaluation

6.5.1 Setup

We built a simulation tool in the Ruby programming language to evaluate our place-
ment strategy. We use the filtered data for access point locations and user locations
as described in Section 5.4. We use the values listed in Table 6.2 as our experimental
settings for the modeling of access point attributes. The values reflect the hetero-
geneity of our access point infrastructure and different deployment characteristics.
It is important to note that even within one type of access point, we consider the
values for the communication range, resources, and costs to be variable. The only
exception are the costs for using street lamps, which we assume to be fixed be-
cause they are operated by a single stakeholder, the municipality (see Table 5.1).
Section 5.2 detailed how the different types of cloudlets are able to host varying
computing resources according to the physical space and deployment models. In

6.5. Evaluation 87

TABLE 6.2: EVALUATION PARAMETERS†

Cellular Routers Street lamps

base stations

Communication random
random (10,70) random (20,80)

range (m) (300,1000)

random
Resources

(2000,5000)
random(5,100) random(5,50)

Fixed cost
random

random(1,100) 100
(1000, 10 000)

Variable cost random(5,10) random(1,5) 1

Section 5.6.2, we have furthermore investigated sensible values for the communi-
cation range of different types of cloudlets. From these considerations we derive
the values for the communication range and resources listed in Table 6.2.

To model the workload that users want to offload, we take the data points from
all three datasets presented in Section 5.4.2. Even though they were captured over
a period of time, for the evaluation, we assume they jointly represent demand spots
of mobile users throughout the city at a single point in time. This simplification al-
lows us to generate sufficient demands, since we only have a limited number of data
points. Each data point is assigned a requested workload of 1 or 2 units. We conduct
our experiments with two different grid cell sizes of 50 meters and 100 meters for
their edge lengths. Heatmaps of these two setups that visualize the total number of
requests per grids are shown in Figures 6.2(a) and 6.2(b). Darker red squares rep-
resent grid cells with high demands, while blue ones are areas with low demands.
As the access point locations, we use the dataset presented in Section 5.4.1.

We compare our placement approach with two alternative strategies for cloudlet
placement, one that randomly selects cloudlet locations and one that solely op-
timizes costs. Both of these strategies do not operate on grids, but make global
decisions for the placement.

Random (RND): This approach randomly selects K access points where cloudlets
are placed on. Obviously, the distribution of the K selected access points with
respect to their type will follow the one of the dataset, meaning that we will
have few expensive locations (i.e., cell towers), and a high number of routers
and street lamps. They will however not necessarily be located in areas where
the coverage has a high impact on the QoS, i.e., areas with a large number of
users. Instead, cloudlets are likely to be spread evenly throughout the city.

Greedy Cost-Aware (GC): This strategy tries to minimize the overall costs by iter-
atively selecting the access points with the lowest overall costs, defined as the
sum of fixed and variable costs, assuming the placed cloudlet will be used to
full capacity. Similar to RND, this will disregard the geographic distribution
of user workloads and might penalize choices that have higher costs but a
good costs-to-resource ratio. We therefore expect this approach to perform
worse than RND in terms of the delivered quality of service. However, for very
cost-restricted deployment models, this will lead to the insight of how much
offloading is possible.

88 Chapter 6. Urban Cloudlet Placement

(a) Grid cell size of 50m (b) Grid cell size of 100m

FIGURE 6.2: GRID CELL SIZES FOR EVALUATION†

6.5.2 Results

Figures 6.3 and 6.4 display the results of our placement strategy for grid cell sizes
of 50 m and 100 m, respectively. For each grid cell size, we evaluate the placement
strategies with values 0.2, 0.5, and 0.8 for α. Recall that α= 0.5 equally weighs the
factors for costs and quality of service in the overall utility, while lower values of α
put more emphasis on the quality of service and vice-versa. For K , we use values
from 1000 to 30 000. Recall that the total number of access points is about 37 000,
hence, our evaluation aims to cover a reasonable range from upgrading very few
up to nearly all access points. Besides the overall utility, the plots include the two
components of the utility function, i.e., the values for the costs and QoS. As defined
in Equation (6.8), higher values denote lower costs and better QoS.

Overall, we see that our proposed GSCORE algorithm surpasses RND and GC in
each evaluated scenario for both the overall utility and the QoS part of the utility
function. Even though barely visible in the graphs, GSCORE leads to a very small in-
crease in the cost factor (in most cases around 1–2%) compared to the other strate-
gies. However, the gain in terms of QoS when using GSCORE to place cloudlets is
much higher. Take as an example the results for K = 10000 and α = 0.2. Irre-
spective of the grid size, GSCORE achieves a QoS value that is three times higher
compared to GC. Therefore, the essential benefit that GSCORE provides is that it
trades a small fraction of cost increase for a much greater increase in the quality of
service. Consequently, for smaller values of α, the gain in the overall utility when
using GSCORE is higher. Since it takes into account the values of α for the scoring,
GSCORE can be tuned to adapt to different deployment and business models for
cloudlets.

Regarding the different grid cell sizes, we observe only a small difference be-
tween sizes of 50 m and 100 m. For 50 m, GSCORE gains a little in the overall utility.
This is because smaller grid cells allow for a more accurate placement decision,
since an access point located within a grid cell is likely to cover more of the area
of that cell. Compared to larger cells, this leads to less cases where an access point
is chosen that only covers a fraction of the cell’s area, and, consequently, is able to
serve fewer users. However, smaller grid sizes result in iterating over more grids,

6.5. Evaluation 89

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1000 5000 10000 15000 20000 25000 30000
K

GSCORE-Utility
RND-Utility

GC-Utility

GSCORE-QoS
RND-QoS

GC-QoS

GSCORE-Costs
RND-Costs

GC-Costs

(a) α= 0.2

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1000 5000 10000 15000 20000 25000 30000
K

GSCORE-Utility
RND-Utility

GC-Utility

GSCORE-QoS
RND-QoS

GC-QoS

GSCORE-Costs
RND-Costs

GC-Costs

(b) α= 0.5

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1000 5000 10000 15000 20000 25000 30000
K

GSCORE-Utility
RND-Utility

GC-Utility

GSCORE-QoS
RND-QoS

GC-QoS

GSCORE-Costs
RND-Costs

GC-Costs

(c) α= 0.8

FIGURE 6.3: PLACEMENT EVALUATION FOR A GRID CELL SIZE OF 50 M†

90 Chapter 6. Urban Cloudlet Placement

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1000 5000 10000 15000 20000 25000 30000
K

GSCORE-Utility
RND-Utility

GC-Utility

GSCORE-QoS
RND-QoS

GC-QoS

GSCORE-Costs
RND-Costs

GC-Costs

(a) α= 0.2

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1000 5000 10000 15000 20000 25000 30000
K

GSCORE-Utility
RND-Utility

GC-Utility

GSCORE-QoS
RND-QoS

GC-QoS

GSCORE-Costs
RND-Costs

GC-Costs

(b) α= 0.5

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1000 5000 10000 15000 20000 25000 30000
K

GSCORE-Utility
RND-Utility

GC-Utility

GSCORE-QoS
RND-QoS

GC-QoS

GSCORE-Costs
RND-Costs

GC-Costs

(c) α= 0.8

FIGURE 6.4: PLACEMENT EVALUATION FOR A GRID CELL SIZE OF 100 M†

6.5. Evaluation 91

and hence, a greater computational overhead to make the placement decision. We
leave the exploration of this tradeoff for future work and plan to further investigate
how other grid cell sizes perform.

As we can also see, for larger values of K , the difference between GSCORE and
RND becomes smaller because with increasing K , there naturally is a greater overlap
in the subset of the chosen access points. This can be seen in the result plots if we
look at the results for K = 30000 and compare this value with the total number of
access points in the inner city boundary (37 648). The results for small values of
K (e.g., K = 1000) behave similarly. In that case, there is less overlap but so few
cloudlets selected such that not many user demands can be met, regardless of the
placement strategy. GSCORE performs best for input sizes between K = 5000 and
K = 20 000 or in other words, between about 13 % and 53 % of all available access
points. We therefore believe this placement strategy can be viable in practice, since
in a real-world deployment, one would neither upgrade very few (because there
would be no substantial gain for users) nor nearly all access points (because of
practical limitations in terms of costs). Furthermore, we argue that GSCORE would
perform even better compared to RND if the environment is more heterogeneous
than in our evaluation setup, e.g., if cloudlets on street lamps are owned by different
operators and therefore have different costs associated with them. Note that our
notion of placing K cloudlets can easily be adapted to match other constraints, such
as the total costs. Instead of K denoting the number of access points, K could for
example model the maximum allowed fixed costs of the deployment.

6.5.3 Discussion

 1000 5000 10000 15000 20000 25000 30000

(Q
(p

)*
) /

 C
(p

)

K

 = 0.5
 = 0.2

 = 0.5
 = 0.2

gs = 100m gs = 50m

FIGURE 6.5: CHOOSING K BY QUALITY-TO-COST RATIO†

To further investigate practical insights on how to choose a suitable K , we ana-
lyze the quality-to-cost ratio for different values of K . Instead of using the normal-
ized utility (see Equation (6.8)), we consider the absolute costs C(p) and for the
quality of service, we weight the absolute workload values by our QoS part of the
utility. Hence, the ratio is given as

Q(p) ·∑wu

C(p)
(6.10)

The reason for considering the absolute costs in this analysis is to give insights
on suitable values of K under real-world constraints, e.g., a fixed budget. Figure 6.5
plots the value for this ratio for different values of K . For this analysis, we use the

92 Chapter 6. Urban Cloudlet Placement

placement decision that GSCORE outputs and the same parameters as described
before. As α, we use 0.2 and 0.5. We omit α = 0.8 because this shows a very clear
trend towards very low values of K , meaning that except for K = 1000, the values
of Equation (6.10) are very low. This is because α = 0.8 weighs the cost factor with
80 % in the total utility.

From the plot, we can observe that the size of the grid cells only has a substantial
influence for low values of K . At K = 1000, the quality-to-cost ratio is lower for a cell
size of 100 m compared to a size of 50 m. This is because, for these low numbers, the
placement algorithm placed almost double the number of cloudlets on cell towers
for the larger grid cell size of 100 m. The reason behind such placement decisions is
that larger grid cells will lead to extremely high computation demands in some cells
(e.g., those that span an entire public square in a city). If a high-capacity cloudlet
(i.e., at a cell tower) is located inside that grid cell, GSCORE will assign this location
a high f actorcapaci t y score, and, therefore, it is likely to be chosen as a location.
In comparison, a smaller size of a grid cell will make it less likely that a cell tower
is located precisely within a grid cell with a high demand. For larger values of K ,
i.e., when we choose more cloudlets, this effect is less striking in the results. If we
omit K = 1000, we can see a sweet spot for the value of K at about 10 000 across
all grid cell sizes. It is worth noticing that these are also the ranges of K where our
proposed algorithm performs best (in terms of surpassing RND and GC as depicted
in Figures 6.3 and 6.4). For a very large number of cloudlets (K ≥ 15000), the
quality-to-cost ratio decreases and is the same across all grid cell sizes and values of
α. This is because for such large numbers of cloudlets, the additional costs incurred
surpass the gain in quality of service.

TABLE 6.3: NUMBER OF CLOUDLETS PLACED FOR A GRID CELL SIZE OF 50 M

RND GC GSCORE

k
=

10
00

0

k
=

15
00

0

k
=

10
00

0

k
=

15
00

0

k
=

10
00

0

k
=

15
00

0

Cellular 26 34 0 0 33 36

Routers 8536 12 737 8473 11 075 7713 11 825

Lamps 1438 2229 1527 3925 2254 3139

TABLE 6.4: NUMBER OF CLOUDLETS PLACED FOR A GRID CELL SIZE OF 100 M

RND GC GSCORE

k
=

10
00

0

k
=

15
00

0

k
=

10
00

0

k
=

15
00

0

k
=

10
00

0

k
=

15
00

0

Cellular 29 46 0 0 29 35

Routers 8447 12 674 8565 11 170 8152 12 428

Lamps 1524 2280 1435 3830 1819 2537

6.6. Conclusion and Future Work 93

Lastly, we look at how the placement strategies differ with regards to the number
of cloudlets placed on each type of access point. We investigate this for values of K =
10 000 and K = 15000, the two K that lead to good quality-to-cost ratios for both
grid cell sizes. Tables 6.3 and 6.4 show the numbers of placements for grid cell sizes
of 50 m and 100 m, respectively. Obviously, for RND, the distribution of cloudlets on
the three types follows exactly the distribution of available access points (compare
Table 5.2). We see that GC always avoids placing cloudlets on cell towers, due to
their high cost. Compared to RND, GSCORE places more cloudlets on cell towers, in
order to increase the quality of service. Note that if we would drastically increase
the user demands, this would increase the number of cloudlets placed cell towers,
since cloudlets on routers and lamps would not be able to cope with the demands.
Across both grid cell sizes, we further observe that for K = 10000, GSCORE places
more cloudlets on lamps and less on routers, compared to GC. The reason for this is
that for street lamps, we assume costs to be homogeneous, while for routers, those
vary (see Table 6.2). Similar to the placement decisions on cell towers, GSCORE
again trades a potential (small) increase in cost for greater improvement on the
quality of service.

6.6 Conclusion and Future Work

In this chapter, we presented GSCORE, a placement algorithm to decide which urban
access point infrastructures to equip with cloudlets. We showed that GSCORE is able
to capture the heterogeneous characteristics of the urban cloudlet infrastructure
and outperforms two baseline algorithms, RND and GC, while running in polynomial
time. It does so by making decisions on grid cells of fixed sizes and is able to trade
a small portion of cost for a substantially higher gain in the number of users that
can offload computations. This tradeoff can furthermore be adjusted to capture
different underlying business models and incentive mechanisms. We envision the
following possible directions for future work:

OTHER DIMENSIONS OF HETEROGENEITY | Besides cost, resources, and communi-
cation ranges, future work could consider other dimensions for the hetero-
geneity of access points, such as the available bandwidth or other network
properties.

ASSIGNMENT OF USERS TO CLOUDLETS | In Section 5.5.1.a, we have shown that
users might have connectivity to more than one cloudlet at a given location.
In our placement strategy, we have assumed that user requests will be di-
rected to the cheapest available cloudlet. However, other factors could be
considered. For instance, users with high mobility could induce a frequent
change of cloudlets, leading to a high overhead when migrating data or com-
putations.

DYNAMIC GRID CELL SIZES | Instead of uniform grid cell sizes, they could be varied,
e.g., according to the workloads requested in the grid. This can serve the
purpose to further optimize the placement strategy. For instance, neighboring
grid cells with low demands could be merged to one, saving computation time
for the placement decision, while at the same time not having a large impact
on the overall quality of service.

Part III

Control & Execution

Infrastructural Support

Control & Execution

Strategies & Adaptations

Part II examined the physical infrastructure for Edge Computing in an
urban environment. On top of this infrastructure, we can now build
the software platform for the execution of services at the edge. Such
a platform manages the resources provided by the physical infrastruc-
ture, e.g., the cloudlets, and—through user-facing interfaces—receives
requests for Edge Computing services and directs them to available re-
sources.

In this part, we propose a control and execution framework for Edge
Computing that is based on the concept of composable microservices.
Chapter 7 will present this framework and details a novel approach
to computation offloading by onloading parts of applications through
a microservice store. The evaluation shows how this approach enables
low-latency and energy-efficient execution of services at the edge.

95

CHAPTER 7

Edge Computing Framework1

Chapter Outline
7.1 Introduction . 97

7.2 Related Work . 99

7.3 Microservice-Based Edge Onloading 103

7.4 Functional Concept . 107

7.5 Implementation Details . 113

7.6 Evaluation . 117

7.7 Conclusion and Outlook . 126

7.1 Introduction

The preceding Part II of this thesis investigated the physical resources in an ur-
ban environment that are necessary to perform Edge Computing. Because of the
multitude of users and applications in the context of Urban Edge Computing, com-
putations in the context of Urban Edge Computing should not run directly on those
resources without an intermediate control and execution layer. Besides enabling
multi-tenancy of clients and applications, such a layer should be responsible for
managing resources and the lifecycle of applications at the edge. Most importantly,
this includes mechanisms for clients to perform computation offloading, i.e., to
make parts of their applications available for remote execution. Furthermore, the
control layer makes runtime decisions, e.g., where to place computations based on
available resources and application requirements.

There are many previous works that propose frameworks for computation of-
floading, with varying granularity of the offloading units, e.g., the offloading of

1Parts of this chapter are verbatim copies from [Ged+19b]. Those text segments are printed in gray
color. Tables and figures taken or adapted from this publication are marked with † in their caption.

97

98 Chapter 7. Edge Computing Framework

methods [Cue+10], threads [Gor+12] or virtual machines [Shi+13]. Some aim at
offloading to cloud infrastructures [BGG19; Chu+11; Shi+14], while others specif-
ically target Edge Computing [LWB16; Mor+17; Jia+19]. Other works focus on the
offloading decision itself [Che+16], or on security aspects [Bha+16].

Common to all of them is the tight coupling between mobile clients and the
offloading infrastructure with regards to the offloading units. Mobility of those
offloading units is realized by either (i) embedding the code and execution envi-
ronments into virtual machines or containers that are transferred from the client
to the surrogates that execute them, or (ii) pre-provisioning the offloading units on
the surrogates. In the first case, this requires energy for the transmissions and these
transfers add to the end-to-end latency, i.e., the time it takes from the service request
to return the result to the user. For devices like smartphones, both of these factors
are critical. Mobile users are often faced with unreliable, low-bandwidth mobile
networks and limited battery life. Performing traditional offloading hence has a
negative impact on these factors and thus affects the overall quality of experience.
The second case—where offloadable units are pre-provisioned on the surrogate—is
practically infeasible in an Edge Computing environment, where we are faced with
limited resources on the surrogate and frequently changing demand patterns.

Many approaches that propose microservice-based execution environments fall
short in their efficiency when multiple microservices and users are involved. More
specifically, many lack mechanisms for the definition and deployment of chained
microservices, i.e., a set of microservices that are executed subsequently. In addition,
current approaches do not support the sharing of service instances between multiple
users and applications and therefore cannot use the overall resources efficiently.

In this chapter, we propose the novel concept of onloading functionality to edge
surrogates through a microservice store. The microservice store is a repository to
which developers can submit their code in the form of containerized applications.
Onloading fetches services from this repository and transfers them to agents that
execute them. This stands in contrast to client-based offloading, where client de-
vices transfer the services. Our system performs onloading on a microservice-based
granularity. Microservices are an increasingly popular software development pat-
tern with many advantages, e.g., higher agility and flexibility in the development
of individual services. Developers of edge applications can leverage externally de-
veloped microservices from the microservice store as building blocks for their appli-
cations. At runtime, the applications request the instantiation of microservices and
do not need to transfer code blocks and execution environments to the surrogate.
Microservice instantiation can also be customized, e.g., by overriding the default
lifetime of the service, and composed to form a chained execution of services. Mi-
croservices in the store can therefore be thought of as a blueprint. We define such
a blueprint with the help of a common language for the orchestration of cloud ser-
vices. Through the reuse of services for different applications, our approach also
allows for a system-wide management of resources, e.g., by deciding which services
are kept active, given request patterns from applications.

Orthogonal to existing frameworks for computation offloading, the concept of
Serverless Computing has recently surfaced. While Serverless Computing partly re-
moves the need for transferring code prior to its execution, it is mainly aimed at
Cloud Computing applications and therefore lacks many aspects that are beneficial
in an Edge Computing environment, such as the sharing of function instances or
fine-grained control over the placement decision.

In summary, this chapter makes the following contributions:

7.2. Related Work 99

• After reviewing related work in Section 7.2, we propose a programming
model for Edge Computing based on the concept of microservices (Sec-
tion 7.3). The model allows developers the definition and composition of
edge-enabled applications. As an alternative to current offloading mecha-
nisms, we propose a new mechanism for executing computations at the edge,
coined store-based microservice onloading.

• We design the functional concept of a distributed Edge Computing framework
that integrates the abovementioned concepts (Section 7.4) and leverages a
customized repository for the provisioning of microservices, reducing expen-
sive transfers from the client device to the surrogates.

• We realize our concepts in a prototype implementation called flexEdge (Sec-
tion 7.5) and show the benefits w.r.t. end-to-end latency, energy savings on
the client device, and efficiency of the service chaining (Section 7.6).

7.2 Related Work

Our contributions presented in this chapter aim at providing an efficient mecha-
nism (with regards to end-to-end latency and energy consumption on the client) to
carry out computations outside a client device. In addition, execution frameworks
for Edge Computing should follow a modular structure that allows the reuse of
(i) application components, and (ii) running instances of those components across
applications. Such a reusable and modular structure is beneficial from the point of
view of developers (as it shortens the development time of edge-enabled applica-
tions), and given the typically constrained resources at Edge Computing nodes. In
light of these requirements, we review related work in the domains of computation
offloading (Section 7.2.1), microservices (Section 7.2.2), and Serverless Computing
(Section 7.2.3).

7.2.1 Computation Offloading

Computation offloading is the process of remotely executing an application or parts
of this application [Kum+13]. This concept is sometimes also referred to as cy-
ber foraging [Bal+02]. As detailed in Section 3.5.1, computation offloading is an
important building block for Edge Computing, as it enables the carrying out of com-
putations outside the end device.

Sharifi et al. [SKK12] review this general concept and summarize research chal-
lenges. Balan and Flinn [BF17] argue that challenges like server setup and main-
tenance are still not solved in current cyber foraging systems. We believe our ap-
proach at least partly frees developers from these burdens, as our Edge Computing
platform is responsible for the instantiation and management of services. Others
have focused on the simplicity for the developer to adapt applications for offload-
ing. For example, Balan et al. [Bal+07] present a domain-specific language for the
easy partitioning of applications.

According to Lewis et al. [Lew+14], three important questions need to be an-
swered in computation offloading: what to offload, where to offload to, and when
to offload. To these three well-established questions, we add a fourth by investi-
gating how to offload, i.e., we propose an alternative to prevailing offloading mech-
anisms. Flores et al. [Flo+15] analyze the different components of an offloading

100 Chapter 7. Edge Computing Framework

system (e.g., code profilers and decision engines) and the practical limitations of
current offloading approaches (e.g., with regards to the postulated energy benefit
for mobile devices).

A variety of offloading frameworks have been proposed. Common to most of
them is that code—and in some cases the entire execution environment—has to be
transferred from the client device to the surrogate, e.g., as done in [KB10]. Sur-
rogate is an umbrella term used for devices that execute code or applications on
behalf of others [SKK12]. Other works, e.g., Wu et al. [Wu+17b] focus only on the
efficiency on the surrogate side and not from the point of view of the client device.
Furthermore, contrary to our approach, not many approaches offer the possibility
for seamless execution of service chains, i.e., executing services subsequently with-
out transmitting intermediate results to the client or to a control entity. In some
cases [Cue+10; Chu+11] chaining is only implicitly enabled by the decisions of
partitioning mechanisms. Some works focus on the speedup that offloading can
provide [KYK12], while the main goal of others is to reduce the energy consump-
tion [Cue+10; MN10], or the monetary cost in cloud offloading [Shi+14]. We can
further distinguish offloading systems by the granularity in which applications or
parts thereof are offloaded. Coarser-grained approaches offload entire virtual ma-
chines [Shi+13; SF05], while finer-grained approaches offload code parts [Kos+12;
Cue+10], functions [Mor+17], or threads [Gor+12; Chu+11].

Cuervo et al. [Cue+10] present MAUI, an offloading framework for mobile
phones that focuses on the energy benefit of offloading. Offloadable parts of an ap-
plication are defined by code annotations. These annotations are static and made by
the developer on a method-level granularity. Other works like CloudAware [OBL16]
also require developer annotations for the offloading and operate on a method-
level (e.g., ThinkAir by Kosta et al. [Kos+12]). We argue that annotations on
such fine-grained units (e.g., single methods of applications) are cumbersome for
the developer. In contrast, our framework flexEdge only requires the developer to
request for a certain functionality provided by a microservice. Deploying applica-
tions in MAUI has a large overhead because two versions of the application need
to be deployed, one locally and one on the surrogate. At runtime, the execution
can then be switched between those two versions. This is done by an optimization
engine that decides which annotated methods are offloaded. Compared to that,
we use microservices that do not need to be present in the client version of the
application. MAUI is also less flexible in the sense that it only supports the .NET
common language runtime.

In contrast to partitioning via manual annotations, CloneCloud [Chu+11] auto-
matically partitions the application. Hence, the offloading decision is made without
developer involvement. A static analyzer identifies possible choices for code parts to
be migrated. Then, a dynamic profiler constructs possible execution trees with asso-
ciated costs. An optimization solver then makes the offloading decision at runtime.
CloneCloud supports only Java applications on the Dalvik VM. AIOLOS [Ver+12b]
also works exclusively on the Dalvik VM. Similar to MAUI, CloneCloud requires a
complete clone VM on the surrogate. The application state has to be synchronized
between the VMs, adding to the overhead of this solution. Similarly, the work of
Gordon et al. [Gor+12] that uses distributed shared memory for offloading requires
synchronization between endpoints. Besides only providing offloading function-
ality, Thinkair [Kos+12] also supports the parallelization of tasks and automatic
scaling across several VMs.

Similar to our proposed approach, some other works [LWB16; Mor+17; Bha+16]

7.2. Related Work 101

also employ a repository for offloadable parts that are then transferred to surro-
gates. Paradrop [LWB16] is a platform for the dynamic orchestration of third-party
services at the edge. Contrary to our work, the authors do however not consider the
aspect of energy savings for the mobile device. CloudPath [Mor+17] is restricted
to stateless functions. Both Paradrop and CloudPath do not allow the chaining of
services. The work of Bhardwaj et al. [Bha+16] focuses on the security aspect of
onloading.

Some previous works are restricted to a specific application domain, e.g.,
Odessa [Ra+11] builds on top of an existing stream processing framework. Mazza
et al. [MTC17] present a concept for a cloud-based offloading mechanism for smart
city applications that jointly manages computation and communication resources.
However, the authors provide no implementation details and evaluation of the
proposed concept.

To summarize this section, Table 7.1 compares the most relevant existing ap-
proaches for offloading. For each approach, we list the evaluation metrics they use,
the granularity of offloading, which transfers or pre-provisionings are necessary,
and whether service composition and instance reuse is supported. The bottom row
of the table also shows how our approach compares to the existing ones.

7.2.2 Microservices

Microservices are a way to develop and deploy software as independent parts, in
contrast to monolithic software [Fow14]. It is widely recognized that this offers
many benefits regarding DevOps [BHJ16]; [KLT16]. The term DevOps summarizes
different practices that use agile methods in order to achieve short development cy-
cles and automated delivery of software [Ebe+16]. Dragoni et al. [Dra+17] provide
a more in-depth introductory survey about the general concept of microservices.

Although the granularity of a microservice is not clearly defined [HAB17;
HB16], microservices are typically characterized as small parts of an application
with limited responsibilities, often restricted to performing a single task. Since those
parts are developed and maintained independently, the concept of microservices
allows for the reuse of components and supports multiple programming languages
across the components of an application. Hence, developers can choose the most
appropriate programming language and set of tools for the individual task. Further-
more, individual parts can be scaled more easily [Jam+18; Dra+18]. The concept
of developing applications as microservices also brings new challenges and con-
cerns [TLP17; STH18], e.g., with regards to an increased operational complexity
and testing efforts.

Microservices have been used in practice for applications in Cloud Computing
[Vil+15a; Vil+16a], IoT [SLM17; BGT16], and smart cities [KJP15]. Our proposed
Edge Computing framework operates on a microservice-level granularity. The sepa-
ration of multiple offloadable parts has advantages in the context of Edge Comput-
ing. For example, different application parts might have different resource require-
ments that cannot be met by all edge surrogates. To support different programming
languages, we require our microservices to be shipped as containers. This concept
of delivering microservices as containers had previously been suggested in [Sil16]
and [Ala+18].

102 Chapter 7. Edge Computing Framework
System

Evalu
ation

m
etrics

O
ffl

oadin
g

gran
u

larity
Prior

tran
sfers

before
execu

tion

Service
com

position
In

stan
ce

reu
se

M
A

U
I[C

ue+
10]

Energy
consum

ption,
latency

C
ode

(m
ethod)

Pre-deployed
application

clone
◦

(im
plicitly

by
partitioning
decision)

�

C
loneC

loud
[C

hu+
11]

Energy
consum

ption,
latency

C
ode

(thread)
Pre-com

puted
partition

and
application

state

◦
(im

plicitly
by

partitioning
decision)

�

ThinkA
ir
[Kos+

12]
Energy
consum

ption,
latency

C
ode

(m
ethod)

A
pplication

transferred
from

client

�
�

Paradrop
[LW

B
16]

D
eploym

ent
tim

e,C
PU

load
M

icroservices
From

store
to

surrogate
�

�

C
loudPath

[M
or+

17]
D

eploym
ent

tim
e,latency

Functions
From

store
to

surrogate
�

◦
(functions

reuse
the

container)

C
O

M
ET
[G

or+
12]

Energy
consum

ption,
latency

C
ode

(thread)
B

ytecode
source

and
stack

transferred
from

client

�
�

fl
exEdge

En
ergy

con
su

m
ption

,
laten

cy

M
icroservices

From
store

to
su

rrogate
�

�

T
A

B
LE

7.1:
C

O
M

PA
R

IS
O

N
O

F
O

F
F

LO
A

D
IN

G
S

Y
S

T
E

M
S

7.3. Microservice-Based Edge Onloading 103

7.2.3 Serverless Computing

Serverless Computing—sometimes called Function as a Service (FaaS)—is a deliv-
ery model for computing services that—similar to our framework—automatically
manages the provisioning, execution, and scaling of services [Bal+17]. These ser-
vices are implemented as stateless functions and often referred to as lambda func-
tions [Hen+16].

Serverless Computing is predominantly a way to deliver Cloud Computing ser-
vices. This is reflected by various commercial offerings, such as Amazon’s AWS
Lambda2 or Google’s Cloud Functions3. Recently, Cicconetti et al. [CCP19] pro-
posed a serverless platform that extends to the edge. However, they retain certain
inefficient communication mechanisms, such as every request being passed through
a dispatcher without direct client-to-surrogate communication. As of today, because
of its scalability, Serverless Computing is mostly used for tasks that are massively
parallel [Jon+17].

While Serverless Computing overlaps with our approach in the sense that code is
made available on the computing infrastructure prior to being requested, there are
some fundamental conceptual differences. For example, in Serverless Computing
there is no sharing of service instances across different users. Another difference
is that in current commercial offerings, users of Serverless Computing platforms
have virtually no control over the underlying mechanisms from an operational per-
spective. For example, the lifetime of the service instance is fixed by the serverless
provider [Hel+19] and placements are agnostic towards dependencies on other
services or data [Wan+18c]. Some serverless runtimes like Snafu [Spi17] do not
consider the chaining of functions and heterogeneity of the hardware on which they
are executed.

In contrast, our Edge Computing framework allows for a flexible definition
and adaptation (via monitoring of requests) of the instance’s lifetime (see Sec-
tion 7.4.2.b). Furthermore, the placement decisions for data (see Chapter 9) and
computations (see Chapter 8) we propose later in this thesis take into account the
heterogeneity of Edge Computing hardware and networks.

7.3 Microservice-Based Edge Onloading

We envision edge-enabled applications to rely on a repository of microservices (the
microservice store) in order to avoid the (prior) transfer of code and execution en-
vironments. Instead of prior transfers over potentially low-bandwidth connections,
microservices are fetched from the microservice store, which is assumed to be well-
connected to the controller. Figure 7.1 contrasts these two approaches of tradi-
tional computation offloading (Figure 7.1(a)) versus our proposed approach (Fig-
ure 7.1(b)).

Traditional offloading includes the transfer of the application logic and exe-
cution environment in conjunction with the request of the client (step 1 in Fig-
ure 7.1(a)). Note that instead of issuing the request to the controller, it could also
be directed to an agent directly. This, however, does not impact the benefit of our
proposed approach. For a better comparison, the figure contrasts the cases where
both approaches include a controller. Contrary to current offloading approaches,

2https://aws.amazon.com/lambda/ (accessed: 2020-03-05)
3https://cloud.google.com/functions (accessed: 2020-03-05)

104 Chapter 7. Edge Computing Framework

Edge Agent

Client Controller

Edge Agent

. . .

(1) Service request

(2) Placement &
instantiation of

service

(3) Return service
location

ce r

(a) Traditional offloading

Edge Agent

Client

Microservice
Store

Controller

Edge Agent

. . .

(1) Service request

(2) Fetch service from store

(3) Placement & instantiation of service

(4) Return service
location

(b) Store-based onloading

FIGURE 7.1: COMPARISON OF APPROACHES

we propose the novel concept of store-based microservice onloading, with support for
chained functions and for the sharing of service instances between multiple users.
Similar to previous works [Esp+17; Bha+16], we define onloading as pulling a re-
quested service from a backend and instantiating it on a target surrogate. In our
approach (depicted in Figure 7.1(b)), a client first issues a request for a service (step
1). Because we want to decouple the mobile device from the agents, requests for
microservices are sent to the controller. Contrary to the traditional approach, the
microservice is fetched from the store (step 2) and instantiated on an edge agent
(step 3). Alternatively, the controller can omit the former two steps if the requested
service is already running. The controller then forwards the service location (e.g.,
the IP address and port number from which it can be accessed) to the client (step
4). Details about the functioning of the individual steps will be described in more
detail in Section 7.4.

7.3.1 Microservice Definition and Structure

Our onloading units are microservices, i.e., independent parts of an application.
These services carry out tasks that often are computationally intensive and that can
be composed into more complex applications. The functionality provided by a mi-
croservice is not linked to a specific application and microservices are independent
in the sense that they can be executed autonomously. From an operations point of
view, the individual services are developed and maintained independently from the
applications that use them.

In our system, a microservice is composed of its code and the metadata that
is required for the target execution environment (e.g., for building a container)
and the management of the service by our Edge Computing framework. Both parts
are packaged and shipped as a CSAR4 file, an established TOSCA standard for the
packaging of cloud services (see Explanation 7.1). Using this standard allows for
the integration of our microservices into other runtime environments, e.g., as pro-
vided by the OpenTOSCA initiative5. Figure 7.2 shows an example of the unpacked

4Cloud Service Archive
5https://www.opentosca.org/ (accessed: 2020-05-27)

7.3. Microservice-Based Edge Onloading 105

object_detection.zip

|-object_detection

|-decorators

|-object_detection

|-services

|-utils

|-app.py

|-Dockerfile

|-requirements.txt

|-object_detection.yaml

|-TOSCA-Metadata

|-TOSCA.meta

FIGURE 7.2: CSAR STRUCTURE FOR THE OBJECT DETECTION MICROSERVICE

file and folder structure of a microservice that performs object detection (see Sec-
tion 7.5.1). Files and folders related to the microservice code are colored in brown,
with the exception of the file that provides the entry point for the microservice exe-
cution (app.py), colored in pink. In this example, we ship the service as a Docker
container and the two required files to build the container are colored in turquoise
(Dockerfile and requirements.txt).

Files that contain metadata for our Edge Computing framework are shown in
red. The file TOSCA.meta contains entry information for processing the file that
serves to describe the service (object_detection.yaml). For the description of
microservices, we extend the TOSCA standard.

EXPLANATION 7.1: TOSCA AND CSAR
The Topology and Orchestration for Cloud Application (TOSCA) language is an
OASIS (Organization for the Advancements of Structured Information Stan-
dards) standard for the description of cloud services and applications. It allows
to model entities and their dependencies in YAML, a human-readable descrip-
tion language. TOSCA furthermore describes a file format to package descrip-
tions. These so-called CSAR files (Cloud Service Archive) are ZIP files that
contain TOSCA description files, the service itself, and additional data.

Specifically, we use the TOSCA Simple Profile v1.16 as a basis. This standard
for service description is aimed at describing cloud services and, therefore, misses
several properties that are relevant in the context of our Edge Computing frame-
work. Specifically, we add properties that are required to make informed placement
decisions (e.g., by considering the resource requirements of services), manage the
lifecycle of services (e.g., by specifying how long they should remain active and
on which ports they run), and select the appropriate services (e.g., by defining the
types of data they operate on). In summary, we add the following properties to the
TOSCA standard for the description of microservices:

RESOURCE REQUIREMENTS | These are the requirements in terms of computing
resources required by the microservice, e.g., memory.

6http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-
v1.1.html (accessed: 2020-03-12)

106 Chapter 7. Edge Computing Framework

SERVICE CATEGORY |Microservices belong to a specific category in a hierarchy (see
Section 7.4.1). This attribute defines which category the service belongs to.
Child categories are separated from parent categories by a forward slash (/).

INPUT AND OUTPUT TYPES | With these attributes, the microservice specifies which
data types are taken as input and what type of data is returned.

LIFECYCLE MANAGEMENT | The attribute alive_time defines the default time that
a microservice should stay active on the edge agent. Contrary to common
serverless platforms, where the lifetime is either limited to a single function
execution or fixed by the provider (e.g., AWS Lambda currently has a maxi-
mum function lifetime of 15 minutes7), this default lifetime can be overridden
by the client in order to adapt it to the application and expected request pat-
terns. In addition, we support the idea of polling to monitor a microservice’s
activity and prevent early shutdowns or unnecessary restarts. The microser-
vice can send an alive message to its agent to notify it of its activity status.
This message in turn resets the alive timer of this microservice to prevent its
automatic shutdown, thus allowing for more efficient use of resources and
avoidance of cold starts (see Section 7.4.2.b for details).

EXECUTION ENVIRONMENT | We also include properties that are specific to the exe-
cution environment in which the service will be run. In our prototype imple-
mentation, we use Docker containers to ship and execute the microservices
(see Section 7.5). Additional properties allow defining the port numbers of
the container and network bridges.

The full TOSCA extension for the description of microservices can be found in Ap-
pendix B. These properties are required by both the client (e.g., to choose an ap-
propriate service according to the category and input/output types), and the Edge
Computing framework (e.g., to make placement decisions based on resource re-
quirements). An exemplary microservice description is shown in Listing 7.1.

LISTING 7.1: TOSCA DESCRIPTION OF A MICROSERVICE

t o s c a _ d e f i n i t i o n s _ v e r s i o n :
t o s ca_ s imp le_p ro f i l e _ fo r_mi c ro se r v i c e s_1_0_0

d e s c r i p t i o n : Template f o r a o b j e c t de t e c t i on a p p l i c a t i o n .
topology_template:

node_templates:
o b j e c t _ d e t e c t i o n :

type: to sca . nodes . m i c ro se rv i c e s . docker_conta iner
p r o p e r t i e s :

id : od01
name: o b j e c t _ d e t e c t i o n
con ta ine r_por t : 5000
mem_requirement: 1000
d i r e c t o r y : o b j e c t _ d e t e c t i o n
input s : [image]
outputs : [image]
category : / images/ computer_vis ion / o b j e c t _ d e t e c t i o n
a l i v e_ t ime : 1800

7information taken from https://aws.amazon.com/lambda/faqs/ (accessed: 2020-06-01)

7.4. Functional Concept 107

7.3.2 Service Chaining

Applications often offload more than one of their components. In many cases, these
components are executed subsequently, i.e., the output of one service is the input for
the next service [Car+16; CDO19; BI14]. Therefore, services often form a service
chain or service pipeline—we use these two terms interchangeably. This workflow
is common to many types of Edge Computing applications, such as the processing
of sensor data (e.g., first the raw values are filtered according to a threshold, then
the values are aggregated), or in video analytics (e.g., first the frame is compressed,
then objects in the frame are detected and annotated before aggregating the count
of each object). We reflect this common workflow for Edge Computing applications
by providing application developers the means to not only request the execution of
an individual service, but of entire service chains.

Requesting the execution of a service chain is done by submitting a chain descrip-
tion file to the controller, which parses it and makes the services available on the
edge agents (see Section 7.4.2 for details). Similar to the description file of a single
microservice, the chain description is implemented as an extension to the TOSCA
standard. The complete extension can be found in Appendix C. In the chain descrip-
tion file, the individual microservices and their properties are listed. Microservices
are referenced by their store identifier. With this identifier, the properties of the in-
dividual service as defined earlier can be retrieved, e.g., for the controller to make
placement decisions (see Section 7.4.2.a). In addition, new attributes are intro-
duced for the service chain. Normally, instances of a microservice can be shared
among multiple clients. If a client wants to use a service instance exclusively, i.e.,
enforce the creation of a new instance, the attribute new_instance can be set for that
microservice. A requirements array indicates which input is required for other mi-
croservices. This also allows for branching of services, i.e., processing flows where
one service requires the output of more than one service, or where the output of
one service is used as input for more than one service. Furthermore, the attributes
first_in_chain and last_in_chain indicate if a service is first or last in the chain. Fig-
ure 7.3 shows an example of such a branched microservice chain. Next to each
microservice, an excerpt of the TOSCA description containing the relevant parts for
the chaining functionality is shown. In Section 7.4.4, we will detail how we realize
chained services using distributed message queues.

7.4 Functional Concept

While the previous Section 7.3 described our general approach to microservice-
based onloading of services and service chains, this section describes the functional
concepts and components that are required to realize this approach. We present the
design of flexEdge, a distributed Edge Computing framework. The main components
of flexEdge were shown in Figure 7.1(b). In the following subsections, we describe
them in detail.

From the developer’s point of view, flexEdge largely abstracts away most oper-
ational concerns such as placement, lifecycle management, and communication of
microservices. From the end user’s point of view, flexEdge can leverage proximate
computing resources to offer low-latency computing services.

108 Chapter 7. Edge Computing Framework

Microservice A

Microservice B

Microservice C

Microservice D

 first_in_chain: true
 last_in_chain: false

 first_in_chain: false
 last_in_chain: false

 input: Microservice A

 first_in_chain: false
 last_in_chain: false

 input: Microservice A

 first_in_chain: false
 last_in_chain: true

 input: Microservice B
 input: Microservice C

FIGURE 7.3: ILLUSTRATION OF BRANCHING IN A MICROSERVICE CHAIN

7.4.1 Microservice Store

The microservice store serves as the repository where services are uploaded to and
made available by developers. The microservice store is modeled as a database and
the microservices and their attributes are the records contained in the database.
When a controller needs to instantiate a microservice on an agent, it requests the
corresponding service from the store.

An entry for a microservice consists of a unique ID, the service name, a descrip-
tion, the category of the service, the types of its inputs and outputs, and the CSAR
file into which the service is packaged. While the ID in the store is unique to one mi-
croservice (defined, for instance, manually by assigning a set of IDs to a developer,
or automatically using UUIDs), the services themselves can be distributed in two
ways. First, in larger-scale implementations, the microservice store would likely
be partitioned across multiple databases. Second, since the microservice store only
provides a blueprint for the controller, multiple instances of one service can be active
on different agents at runtime. The unique ID described here is a global identifier
that developers use to request the execution of a particular service.

To model the different categories of microservices, we chose a hierarchical,
inheritance-based model because it allows for a compact and natural representa-
tion. Furthermore, this approach corresponds to the object-oriented paradigm that
is common knowledge among developers. A category may be the child of a parent
category and the parent of several subcategories. For example, the category of our
object detection microservice (see Section 7.5.1) can be seen in Listing 7.1. This mi-
croservice belongs to the category object_detection, which in turn is a subcategory of
the categories computer_vision and images. The information about the category, the
inputs, and the outputs are especially important since they serve as the basis for our
second microservice addressing scheme that is based on the semantic description
and allows for an automatic selection of services (see Section 7.4.2.a).

7.4. Functional Concept 109

7.4.2 Controller

Cl
ie

nt
-fa

cin
g

AP
I

Request
(single

service /
service
chain)

Controller

Agent-facing API

Microservice
Store

Microservice

Edge Agent

Microservice Microservice

Edge Agent

1

4
Creation/deletion of
message queues and

chain routes

2 Service selection

Client

5 Lifecycle
management

FIGURE 7.4: OVERVIEW OF THE CONTROLLER’S FUNCTIONALITIES

The controller is the centerpiece of flexEdge. Figure 7.4 depicts the main func-
tionalities of the controller. The controller maintains a list of edge agents that exe-
cute the microservices on the surrogate machines. Furthermore, the controller has
a global view on the system, including which microservices are currently running
on which agents. It has two main APIs, one facing the clients, and one facing the
agents.

The controller’s functionalities can be divided into three parts. First, following
requests from clients (labeled � in Figure 7.4), it selects an appropriate microser-
vice for the request (� in Figure 7.4), and places the service(s) on edge agents
(� in Figure 7.4). Section 7.4.2.a describes this part of the functionality in more
detail. Second—following the placement decision—the controller is responsible for
the creation and deletion of the message queues associated with the microservices
instances (� in Figure 7.4). Section 7.4.4 details the implementation of message
queues in flexEdge. Third, the controller manages the lifecycle of the microservice
instances (� in Figure 7.4), i.e., it monitors their execution and decides when to
stop services. Section 7.4.2.b describes this lifecycle management in more detail.

7.4.2.a Service request and placement

Clients request either the execution of a single service or of a service chain. Both
types of requests are issued to the controller via a call to a REST-style API. The
execution of a single service can be requested in two ways: (i) by providing the store
identifier of the microservice or (ii) by specifying a category and the data types of
the inputs and outputs. Based on this information the controller selects a matching
microservice from the store. In case the client requests the execution of a service
chain, it submits the chain description (see Section 7.3.2) to the controller. In both

110 Chapter 7. Edge Computing Framework

cases, the controller sends a response back to the client, detailing the location of
the service(s) (i.e., the corresponding agent IP addresses and exposed ports), and
the queue name where requests can be issued to.

Conceptually, our approach of selecting services relies on mechanisms that are
similar to UDDI8 [Cur+02]. UDDI is a specification for the discovery of web ser-
vices that consists of three main elements: white pages (containing the name and
meta information about the service), yellow pages (describing the category of the
service), and green pages (containing technical information about the service and
further details on how to access it). Mapped to our functional design, white pages
and yellow pages are represented by the attributes of the service as saved in the
database record of the microservice store (i.e., the name, description, and category
of the service), while technical details (comparable to green pages) are contained
in the TOSCA description file (e.g., specifying the container runtime or the ports).

After receiving requests, the controller needs to decide (i) if running instances
of services should be reused and (ii) on which agents to place new microservice
instances. For these placement decisions, different approaches can be employed.
This chapter is intended to describe the overall design of our microservice execu-
tion mechanism, and hence, concrete placement algorithms are beyond the scope of
this chapter. The controller’s global view (e.g., w.r.t. the resources available on the
agents and where microservices are running) and the description of the services
(e.g., their resource requirements) enable the implementation of different place-
ment strategies on the controller. Chapter 8 will present a strategy that could be
implemented at a controller for the placement of microservices.

7.4.2.b Service lifecycle management

When a microservice is requested, we can distinguish between a warm start and a
cold start. A cold start of a microservice happens when the microservice to be used
is not yet running on the agent. In a cold start—following the placement decision
of the controller—the microservice has to be transferred from the store to the agent
and then started on the agent. In contrast, a warm start of a microservice happens
when the client uses an already running instance of a microservice. In this case,
the process of transferring the service from the store and starting the service will be
skipped, i.e., step 2 and step 3 in Figure 7.1(b).

Besides the placement of microservices, the controller is also responsible for
terminating services. By default, this is done after the default alive time specified
in the service description has elapsed. The framework also offers the possibility to
override this at the time of service instantiation. In that case, microservices report
to the controller when they are being actively used, e.g., when a certain number of
requests have arrived in a time frame. The exact timing is left at the discretion of the
microservice developers, who need to actively implement this feature. Whenever
the controller receives such a polling message from the service, the service lifetime is
reset to the initial value. Timer tasks running on the controller regularly terminate
services whose lifetimes have expired. This mechanism allows for a flexible man-
agement of the service lifetime. This dynamic termination strategy is in contrast,
e.g., to the current practice in Serverless Computing, where function instances are
terminated after a fixed time. Manner et al. [Man+18] have investigated influenc-
ing factors on the cold start latency in the domain of Serverless Computing. They

8Universal Description, Discovery, and Integration

7.4. Functional Concept 111

furthermore concluded that there is a significant difference between the latency
that the user perceives versus the actual, billed duration. In Edge Computing, where
many offloaded application components represent user-facing functionality (e.g., in
the domain of rendering or computer vision), this insight is especially important.

Clearly, lifecycle management incurs a tradeoff. Terminating services too early
(i.e., when clients still frequently request them) means more cold starts, and hence,
higher end-to-end latencies as will be shown in Section 7.6.2.a. On the other hand,
keeping services active consumes scarce resources on the edge agents. We leave the
exploration of this tradeoff for future work.

7.4.3 Edge Agent

The edge agent is a background service that runs on the surrogates and enables
the actual execution of microservices. It does so by providing two interfaces: (i) a
northbound interface to the controller, and (ii) a southbound interface to the exe-
cution environment. We borrow this terminology from the domain of SDN (see
Section 3.5.3), where it is used to denote the distinction between interfaces to a
high-level control entity (northbound), and the execution of the controller’s poli-
cies (southbound). In our system, the definition of these interfaces serves to decou-
ple the control functionalities, e.g., placement and monitoring, from the concrete
execution environment on the agent.

The edge agent is designed to be extensible in order to support different execu-
tion environments. One example of such an execution environment is the container
platform Docker (see Explanation 7.2 in Section 7.5 for details). The agent man-
ages the execution environment for the microservices (e.g., by issuing commands
to the Docker command line interface for the starting and stopping of containers)
and interacts with the controller for their lifecycle management (e.g., it receives
requests from the controller to stop a running service). The agent reacts to instan-
tiation requests coming from the controller. If the corresponding container image
(see Section 7.5 for details about the container runtime) does not exist on the agent
yet, it will be built upon requesting the service. Future invocations of microservice
instances will use the pre-built image unless the client sends a force_rebuild flag.
Figure 7.5 illustrates the role of the edge agent with the example of Docker as an
execution environment.

Su
rr

og
at

e

southbound
interface

Edge Agent

northbound
interface

Controller

FIGURE 7.5: EDGE AGENT AND ITS INTERFACES

112 Chapter 7. Edge Computing Framework

7.4.4 Message Queues

Because we envision applications to be broken up into individual microservices,
these microservices need a way to communicate, (i) with the client to receive inputs
and deliver results, and (ii) between each other to realize service chains (i.e., the
result of one microservice is forwarded as input to the next microservice).

In flexEdge, we realize this communication through distributed message queues.
Distributed message queues function through a message broker that relays messages
between senders and receivers, often allowing for publish-subscribe communica-
tion patterns [Eug+03], which have been used extensively, e.g., in the IoT domain
[Sil+16; Wan+12]. In our dynamic edge environment, using message queues is
advantageous for the following reasons:

(i) ASYNCHRONOUS COMMUNICATION |Message queues provide an asynchronous
communication mechanism. Hence, clients are able to issue non-blocking re-
quests to the queue and do not have to wait for the completion of the request,
enabling them to continue to execute local parts of an application. In contrast,
other offloading frameworks use synchronous communication patterns. As an
example, MAUI [Cue+10] uses RPCs9 between the clients and the surrogates.

(ii) DECOUPLING | Having a message broker in-between the clients and the mi-
croservice instances decouples those two entities. This naturally supports the
design of our system, in which microservice instances can be shared among
different clients. The decoupling furthermore facilitates future optimizations
of our system. For instance, supporting the scaling out of instances can be
done by dynamically re-assigning requests to queues that correspond to dif-
ferent service instances. In comparison, many other offloading frameworks,
e.g., [LWB16; Chu+11; Kos+12] cannot leverage these advantages, as they
expect a direct relationship between the client and the offloaded functionality.

(iii) ADDITIONAL GUARANTEES | Depending on the message broker that is used,
it can offer additional guarantees, such as delivery guarantees. Those are
relevant, for instance, when an edge node fails and requests need to be re-
transmitted to other service instances.

In our design of the message queue concept, each microservice is associated with
a request queue, addressed by a unique name. Furthermore, each service chain has
a distinct result queue, to which the result of the last service in the chain is pushed.
The message queues are distributed in the sense that each agent runs a message
broker that maintains the message queues of each service running on that agent.
After the controller has made placement decisions for the individual services of the
chain, it constructs a route, containing the chain’s structure. This route is a python
dictionary that is passed through the entire service chain in the message header,
such that microservices in the pipeline know to which queue they should publish
their results. In detail, the chain route contains the following information: (i) the
chain’s first message queue where the client pushes requests (denoted by the key
start), (ii) the IP addresses of the agents where a given service is placed (since
each agent has its own message broker), (iii) ports (container-internal and exposed
to the host) that the service listens to, (iv) the previous and next message queues
(denoted by the keys prev and next) (v) the identifier of the result queue (denoted
by the key result), and (vi) a unique identifier of the chain (chain_id).

9remote procedure calls

7.5. Implementation Details 113

Listing 7.2 shows an example of such a route (serialized to JSON), consist-
ing of three service instances in the following order: image_compression_1 →
super_resolution_1→ mesh_construction_1.

LISTING 7.2: EXAMPLE OF A MICROSERVICE CHAIN ROUTE

{
’ s t a r t ’ : ’ image_compression_1 ’ ,
’ r e s u l t ’ : ’ resu l t_27fceda6−d5ea−4461−bbd2−5cb8ae4cdb0f ’ ,
’ image_compression_1 ’ :

{
’ agent ’ : ’ 18.189.1.228 ’ ,
’ po r t s ’ : [{ ’ c on ta ine r_por t ’ : 5000 , ’ hos t_por t ’ : 59203 , ’

�→ pro toco l ’ : ’ t cp ’ }] ,
’ next ’ : [’ super_ re so lu t ion_1 ’] ,
’ prev ’ : []
} ,

’ super_ re so lu t ion_1 ’ :
{
’ agent ’ : ’ 18.189.1.228 ’ ,
’ po r t s ’ : [{ ’ c on ta ine r_por t ’ : 5000 , ’ hos t_por t ’ : 61712 , ’

�→ pro toco l ’ : ’ t cp ’ }] ,
’ next ’ : [’ mesh_construct ion_1 ’] ,

’ prev ’ : [’ image_compression_1 ’]
} ,

’ mesh_construct ion_1 ’ :
{
’ agent ’ : ’ 18.189.1.228 ’ ,
’ po r t s ’ : [{ ’ c on ta ine r_por t ’ : 5000 , ’ hos t_por t ’ : 56974 , ’

�→ pro toco l ’ : ’ t cp ’ }] ,
’ next ’ : [’ r e su l t_27fceda6−d5ea−4461−bbd2−5cb8ae4cdb0f ’] ,

’ prev ’ : [’ super_ re so lu t ion_1 ’]
} ,

’ r e su l t_27fceda6−d5ea−4461−bbd2−5cb8ae4cdb0f ’ :
{
’ agent ’ : ’ 18.189.1.228 ’
} ,

’ cha in_ id ’ : ’ 25 ce f7c f −5a73−41a4−a677−760dd3c7ef2a ’
}

7.5 Implementation Details

We realize a prototype implementation of our proposed concept. This section de-
scribes further technical details about the implementation. Figure 7.6 shows an
overview of the implemented system and its components. Our implementation
consists of (i) a centralized controller, to which clients submit requests for the ex-
ecution of microservices, (ii) edge agents that run the containerized microservices,
and (iii) the microservice store. The controller and the agents are implemented as
Python applications. For the containerization of microservices, we use Docker (see
Explanation 7.2).

114 Chapter 7. Edge Computing Framework

Microservice
Store

Agent

M
icr
os
er
vi
ce

M
icr
os
er
vi
ce

M
icr
os
er
vi
ce

Agent

M
icr
os
er
vi
ce

M
icr
os
er
vi
ce

M
icr
os
er
vi
ce

Agent

M
icr
os
er
vi
ce

M
icr
os
er
vi
ce

M
icr
os
er
vi
ce

Controller

FIGURE 7.6: PROTOTYPE IMPLEMENTATION

EXPLANATION 7.2: DOCKER

Dockera has emerged as the predominant platform for container-based virtu-
alization. All running containers on a system share the same kernel; hence, it
is often referred to as OS-level virtualization. Compared to virtual machines,
containers typically are smaller and hence, quicker to instantiate (see also Sec-
tion 3.5.2 for details about different virtualization technologies). Docker is a
platform that consists of several pieces of software. At its core is the daemon
that builds and runs containers. Users interact with the daemon through a
command-line interface. Containers in Docker are built using read-only images
as templates. Users can pull such images from a registry and create customized
images based on a base image. This is done with the help of the Dockerfile. This
file has a special syntax to define the necessary steps for the creation of contain-
ers from a base image (e.g., by installing custom software packages). Docker
offers different possibilities to interconnect containers, e.g., through bridge net-
works. Furthermore, internal network ports of a container can be mapped to a
port of the host machine, making the container available from outside.

ahttps://www.docker.com/ (accessed: 2020-02-23)

Clients are assumed to know the controller’s API endpoint to which they sub-
mit microservice execution requests. We further assume that our controller has a
global and correct view of the overall system, including all available agents. In or-
der to obtain this global view, the controller can retrieve information from a Redis10

10https://redis.io/ (accessed: 2020-03-04)

7.5. Implementation Details 115

instance. This in-memory key-value store is kept updated with information about
agents and the current state of the system (e.g., which microservice instances and
resources are currently available). To parse the microservice descriptions, we adapt
the TOSCA parser from the OpenStack project11, so that it is able to parse our exten-
sions for the definitions of microservices and service chains (see Section 7.3.1 and
Section 7.3.2). Following a client request and a placement (see Section 7.4.2.a),
the requested services are either newly instantiated or existing ones are reused and
requests redirected to them. In the first case, the controller creates a new, unique
instance name for that service, composed of its name (as found in the TOSCA de-
scription) concatenated with a sequential numbering. This unique instance name is
required by clients, agents, and the controller to address the service instance. The
controller also creates network port mappings between the internal ports of the mi-
croservice container and the host system. To do so, the controller assigns a host
port from the range of 50001 to 61999 (since those fall into the range of so-called
dynamic ports as defined in RFC633512 and hence, do not conflict with any well-
known system ports). When assigning a host port, the controller also takes into
account the already running microservices on the agent, as to avoid port conflicts.

All REST-style APIs are implemented using Flask13, a lightweight web frame-
work for Python. The edge agents also run as dockerized Python applications on
the surrogates. The microservice store is connected to the controller and realized in
MongoDB14, a document-oriented database. Each microservice is stored as a docu-
ment in a MongoDB collection. Each document has a unique ID (the store ID of the
microservice that can be used to reference it), its name, a textual description, input
and output types, and the category. Because microservices can have a substantial
size, we enable GridFS in the database system to store the CSAR files of the mi-
croservices15. The document of a microservice contains a reference to the GridFS
document where the corresponding CSAR file is stored. Categories for microser-
vices are defined in a separate collection. Each document stored there contains a
reference to a parent category (unless it belongs to a root category), allowing us to
model hierarchies of service categories.

To realize the message queues, we use RabbitMQ16, an open-source message
broker. Each agent runs an instance of the message broker. It is responsible for
creating and deleting message queues for each microservice running on that agent.
For each microservice, a message queue is created to which requests for that service
are sent. This request queue is addressed by the same identifier as the corresponding
microservice instance. The result queue for a service chain is maintained on the
agent that executes the first service in the chain. The identifier for the result queue
is generated with a UUID17.

7.5.1 Demo Microservices

To evaluate our system, we developed three microservices. We have made them
available for the research community18. All microservices were implemented in

11https://github.com/openstack/tosca-parser (accessed: 2019-04-08)
12https://tools.ietf.org/html/rfc6335 (accessed: 2020-05-13)
13https://palletsprojects.com/p/flask/ (accessed: 2020-03-04)
14https://www.mongodb.com/ (accessed: 2020-02-24)
15MongoDB currently limits the size of regular documents to 16MB
16https://www.rabbitmq.com/ (accessed: 2020-03-10)
17Universally unique identifier
18https://github.com/Telecooperation/flexEdge-microservices (accessed: 2019-11-18)

116 Chapter 7. Edge Computing Framework

(a) Object detection input image (b) Object detection result image

(c) Face detection input image (d) Face detection result image

FIGURE 7.7: EXAMPLE RESULTS PRODUCED BY THE MICROSERVICES

Python, use Flask and Bottle19 to implement a REST-based API, and were shipped
as Docker containers.

(i) OBJECT DETECTION | Using TensorFlow, we performed object detection on an
image. The microservice returns the original image including the detected
objects, enclosed by rectangles and labeled with the name of the object and
a confidence value. The microservice code was adapted from the TensorFlow
Object Detection API20 and we used the ssd_mobilenet_v1_coco model trained
on the COCO dataset. Figures 7.7(a) and 7.7(b) show example input and
output images for this microservice.

(ii) FACE DETECTION | Using OpenCV and a LBP Cascade classifier, our second
microservice detects faces in an image and returns the original image with
the faces enclosed by rectangles. An example of the output produced by this
service (with Figure 7.7(c) as input) can be seen in Figure 7.7(d)21

(iii) WORD COUNT | Lastly, we used a simple word count application that counts
the number of words in a given text file. This application served as a simple
benchmarking tool for our experiments.

19https://bottlepy.org/ (accessed: 2020-03-30)
20https://github.com/tensorflow/models/tree/master/research/object_detection (accessed: 2019-

11-18)
21Pictures are taken from the WIDER FACE dataset: http://shuoyang1213.me/WIDERFACE/ (ac-

cessed: 2020-02-20)

7.6. Evaluation 117

7.5.1.a Service chain

In addition, for the performance evaluation of our chaining mechanism (see Sec-
tion 7.6.3), we considered a simple chain for benchmarking. The service chain takes
text as input and at the first stage, a service just echoes back the input into the next
queue. The second service splits up the text into individual words. The third service
counts the number of individual words. Finally, the last service echoes back the re-
sult of the word count. Figure 7.8 illustrates this demo chain of microservices. The
TOSCA description file that describes the chain can be found in Appendix D.

FIGURE 7.8: DEMO MICROSERVICE CHAIN FOR THE EVALUATION

7.6 Evaluation

We evaluate the store-based onloading approach of our proposed Edge Computing
framework with regards to end-to-end latency (Section 7.6.2.a) and energy con-
sumption (Section 7.6.2.b). We also provide some further discussion on the loca-
tion of the microservice store (Section 7.6.2.c) and the performance and energy
impact when executing the services on a mobile device (Section 7.6.2.d). Finally,
we show the efficiency of our approach to chaining microservices and compare it
with a state-of-the-art serverless platform (Section 7.6.3).

7.6.1 Experimental Setup

As an edge node, we use a Lenovo ThinkCentre M920X Tiny with an Intel Core
i7-8700 and 16 GB RAM running Ubuntu 18.04. This device is a consumer-grade
desktop computer that has a small form factor and hence, is an ideal example of an
Edge Computing surrogate that might be deployed in practice. The edge node is
connected via Gigabit Ethernet to a Linksys WRT 1900 AC wireless access point that
at the same time serves as a 802.11nac gateway for the mobile device. Besides WiFi
connectivity, we also conduct our experiments using a 4G cellular network in order
to cover the different types of wireless connections that client devices encounter.
We use the network of the carrier Deutsche Telekom with an advertised maximum
bandwidth of 300/50 Mbit/s (down/up). The controller and the microservice store
are colocated on the same machine, a Citrix Xen VM. The VM uses 1 Core of an
AMD Opteron 6380 (clocked at a maximum of 3.4 GHz), has 8 GB of RAM and
runs Ubuntu 16.04. This VM runs in the same backend network as the edge node.

118 Chapter 7. Edge Computing Framework

As a mobile client device, we use a Google Pixel 2XL phone (8-core Qualcomm
Snapdragon 835, 4 GB RAM) running Android 9.

For the OpenWhisk environment used in Section 7.6.3, we use an Amazon AWS
EKS cluster, consisting of three EC2 instances of type m5.large (2 vCPUs clocked at
up to 3.1 GHz each, 8 GB RAM, Ubuntu 18.04), located in the Frankfurt availability
region. Two of those instances are used for the OpenWhisk invoker nodes and one for
the core node. For a better comparison, the agents of flexEdge also run on m5.large
instances for this part of the evaluation.

7.6.2 Store-Based Microservice Onloading

We use the three microservices described in Section 7.5.1 for the evaluation and use
the mode where microservices are selected based on their store ID by the client. Ex-
periments are conducted in both the WiFi and 4G cellular networks. Furthermore,
we consider both cold starts and warm starts. Recall that in a cold start, there is
no running instance of a microservice available and, hence, the service has to be
instantiated on the agent. We compare our approach of store-based onloading with
traditional offloading, in which the entire service (i.e., in our system the CSAR file)
to be executed is transferred from the device to the controller/agent with every
invocation (in both cold start and warm start).

7.6.2.a Latency

TABLE 7.2: OVERVIEW OF SPEEDUPa

cold start warm start

WiFi OD: 1.406× (28.89 %) OD: 4.531× (77.93 %)

FD: 0.996× (-0.40 %) FD: 1.549× (35.44 %)

WC: 1.012× (1.20 %) WC: 2.014× (50.34 %)

Cellular OD: 5.508× (81.84 %) OD: 13.031× (92.33 %)

FD: 1.111× (10.02 %) FD: 1.109× (9.83 %)

WC: 0.990× (-1.04 %) WC: 1.561× (35.92 %)
aOD: object detection, FD: face detection, WC: word count

First, we evaluate the end-to-end latency, i.e., the time between when the service
request is sent from the client device and when the result is received. Each exper-
iment is repeated 30 times. The mean values of the execution time are shown in
Figure 7.9, plotted individually for each microservice. The detailed values for each
microservice, along with the standard deviation, minimum and maximum values
can be found in Appendix E.

For a more fine-grained analysis, we divide the analysis of the overall latency
into two steps: (i) the time it takes to invoke the microservice and (ii) the actual
execution time of the task (including the transfer of input and result data). This
allows to better quantify the overheads of cold starts, i.e., the transfers of services
prior to their execution and the time to instantiate them on the agents. To gain even
more detailed insights on the total execution time, we choose one microservice—
the object detection—for which we also measure the individual times for uploading
the input and downloading the result.

7.6. Evaluation 119

MS−Store Offload MS−Store Offload

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

0

10000

20000

30000

40000

WiFi Cellular

La
te

nc
y

(m
s)

Download image Perform object recognition
Upload image Start microservice

(a) Object detection

MS−Store Offload MS−Store Offload

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

0

500

1000

1500

2000

2500

WiFi Cellular

La
te

nc
y

(m
s)

Perform face detection Start microservice

(b) Face detection

MS−Store Offload MS−Store Offload

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

0

150

300

450

600

750

900

1050

WiFi Cellular

La
te

nc
y

(m
s)

Perform word count Start microservice

(c) Word count

FIGURE 7.9: END-TO-END LATENCY†

120 Chapter 7. Edge Computing Framework

Table 7.2 summarizes the average reduction times for the microservices,
grouped by startup mode and type of wireless access. The table shows the ab-
solute reduction (as a factor) and the corresponding percentage of the reduction.
In conclusion, we saw an average reduction in the end-to-end latency of 1.1–14 ×.
From the results, we can make a number of observations. If we use our approach in
warm start, we see a reduced latency across all microservices. For a cold start, the
benefit of our approach depends on the size of the microservice. To put this into
perspective, the sizes of the CSAR files are 28 MB (object detection), 12 KB (face
detection), and 2 KB (word count). In the conventional offloading approach that
we use as a baseline, the CSAR file always has to be transferred from the client
device. This explains the reduction in latency when using store-based onloading
for the first step (service invocation) in the object detection and (to a lesser degree
because of its size) the face detection microservice.

In two cases (FD/WiFi/cold start, and WC/cellular/cold start) our approach
led to a small increase in latency. The reason for this is the very small size of those
microservices, and that the delay of transferring them from the store to the agent is
comparable to transferring a very small CSAR file via a cellular network. In warm
start, however, even with those small services, our approach reduces the latency by
9.83 %–92.33 %. The highest reduction in warm start latency can be seen with the
object detection microservice, with a reduction of 77.93 % (over WiFi) and 92.33 %
(over a cellular connection).

In conclusion, the benefits of our store-based onloading were especially striking
if we assumed that large microservices would have to be transferred from the mobile
device to the target execution environment. Furthermore, we assumed that even in
warm start, this would have to be performed in traditional offloading. Our largest
microservice is a representative example of a functionality that would be carried out
outside the mobile device, and therefore, this demonstrates the practical benefit of
our approach for executing services outside a client device. For smaller services,
however, the benefit of onloading is substantially smaller.

7.6.2.b Energy consumption

TABLE 7.3: OVERVIEW OF ENERGY SAVINGSa

cold start warm start

WiFi OD: 1.444× (30.73 %) OD: 4.305× (76.77 %)

FD: 1.012× (1.22 %) FD: 1.231× (18.79 %)

WC: 0.982× (-1.81 %) WC: 1.265× (20.96 %)

Cellular OD: 6.247× (83.99 %) OD: 18.850× (94.69 %)

FD: 1.025× (2.48 %) FD: 1.123× (10.99 %)

WC: 1.008× (0.84 %) WC: 1.140× (12.25 %)
aOD: object detection, FD: face detection, WC: word count

We now show how our approach benefits the mobile device in terms of pro-
longing its battery life. To quantify this benefit, we measure the energy consump-
tion of our store-based onloading and compare it with traditional offloading. To
measure the energy consumption of the smartphone, we use the value of the
BATTERY_PROPERTY_CHARGE_COUNTER property reported by the Android Battery

7.6. Evaluation 121

MS−Store Offload MS−Store Offload

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

0

3000

6000

9000

12000

WiFi Cellular

C
on

su
m

ed
 b

at
te

ry
 p

ow
er

 (μ
Ah

)

(a) Object detection

MS−Store Offload MS−Store Offload

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

0

350

700

1050

1400

WiFi Cellular

C
on

su
m

ed
 b

at
te

ry
 p

ow
er

 (μ
Ah

)

(b) Face detection

MS−Store Offload MS−Store Offload

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

cold
start

warm
start

0

200

400

600

800

1000

WiFi Cellular

C
on

su
m

ed
 b

at
te

ry
 p

ow
er

 (μ
Ah

)

(c) Word count

FIGURE 7.10: ENERGY CONSUMPTION†

122 Chapter 7. Edge Computing Framework

Manager. This property can be accessed via the Android developer API and provides
the remaining battery capacity in μAh. By preliminary testing, we found that the
phone’s operating system updates the battery manager every 1.5 seconds. A single
run in our experiments (i.e., executing a microservice once) can however take less
than a second. Therefore, we consider the difference in battery capacity across all
runs and divide this delta with the number of experiments to get an estimation of
the consumed power for a single execution.

Figure 7.10 shows the results of the consumed battery power for a single exe-
cution, averaged from all 30 measurements. Comparing the results with those of
the latency evaluation in the preceding Section 7.6.2.a, we can observe a correla-
tion between the reductions in the end-to-end latency and the power consumption.
Similarly, how big the benefit of our approach is depends both on the size of the mi-
croservice and whether it is invoked in cold or warm start. When invoking a service
in warm start, we see a reduction in the energy consumption for all microservices.
How big this reduction is depends on the size of the microservice. In the traditional
offloading approach, transferring a larger microservice CSAR file consumes more
energy, as can be seen in the example of the object detection. For a cold start invo-
cation, the energy savings also depend on the size of the microservice, but overall,
the benefits are less striking (in this case, the mobile device has to wait for the in-
stantiation and keep the connection open and hence, energy is consumed in the
meantime). For one case—the word count microservice invoked in cold start over
a WiFi connection—we found a negligible increase in energy consumption when
using our approach. We attribute this to measurement inaccuracies in the internal
battery manager software.

As in the previous section, we summarize the average savings of our approach
in Table 7.3. If we compare this table with Table 7.2, we can see that the results are
similar, i.e., our approach is most beneficial with the object detection microservice,
which is the largest in size. In conclusion, this part of the evaluation showed that
overall our approach is able to save battery life for the mobile device.

7.6.2.c Microservice store location

Object detection

Face detection Word count

0

5000

10000

15000

20000

La
te

nc
y

(m
s)

Location
colocated
local network
AWS Ireland
AWS US East

FIGURE 7.11: IMPACT OF THE STORE LOCATION ON THE LATENCY†

In the previous experiments, the microservice store was assumed to be colocated
at the controller and close to the agents (more specifically, in the same local area

7.6. Evaluation 123

network). However, if we envision a large-scale deployment of our system, we can
make two observations. First, we would not have a single controller but multiple
distributed controllers. Those could for example form a hierarchy, in which each
controller is responsible for one (geographic) region. Second, a single controller is
unlikely to be hosted on hardware that has the capacity to host all microservices.
Hence, in practice, we would not only see a decoupling of the controller and the
microservice store, but multiple instances of those two entities. Having the mi-
croservice store not colocated at the controller potentially incurs a big performance
penalty, e.g., when the store is located in a distant cloud infrastructure.

We now quantify the impact of the microservice store location on the cold start
latency and derive recommendations for a large-scale deployment of flexEdge. We
consider the microservice store to be (i) colocated on the controller, (ii) in the same
local network, and (iii) in two cloud locations. For the latter, we use Amazon AWS
EC2 instances located in the availability regions US East and Ireland. In the exper-
iment, the controller and the agent are both located in Darmstadt, Germany.

The results are shown in Figure 7.11. Depending on the size of the microservice,
the store location greatly affects the latency. While a store located in the same
network has a relatively small impact on the latency, using Cloud services increases
the latency by 33 % (AWS Ireland) up to 200 % (AWS US East). Hence, for a viable
deployment, the microservice store should be close to the controller and agents so
as not to jeopardize the benefits of our offloading scheme. However, in practice,
the microservice store, controller and agents would likely be well-connected via
wired networks, compared to more unreliable (and sometimes metered) wireless
networks that mobile clients use. Hence, even with additional network hops to
transfer the microservices to the agents, our approach is beneficial for the overall
latency.

7.6.2.d Comparison with local execution

0

2000

4000

6000

0

500

1000

1500

local store local store

La
te

nc
y

(m
s)

C
on

su
m

ed
 b

at
te

r y
 p

ow
er

 (μ
Ah

)

Latency Energy consumption

FIGURE 7.12: COMPARISON WITH LOCAL EXECUTION†

We now compare the difference in end-to-end execution latency and energy
consumption if a service is executed locally on the mobile phone. For this, we use
the object detection as an example and implement a version of this microservice for

124 Chapter 7. Edge Computing Framework

Android. The code is adapted from the TensorFlow Android Camera Demo22. We
use faster_rcnn_inception_v2_coco as a model. In this experiment, we use a warm
start execution through WiFi with the same hardware as described before.

Figure 7.12 shows the result. Our approach leads to a reduction in latency of
about 50 % compared to local execution. Furthermore, the consumed energy of
the local execution is almost six times higher than the consumed energy of the
offloaded execution through the microservice store. These results demonstrate that
our store-based microservice onloading can help in prolonging the mobile device’s
battery life while reducing the end-to-end latency (and hence increase the user’s
quality of experience).

There is, however, a tradeoff between those gains and the overhead of on-
loading. As we have seen in Section 7.6.2.a and Section 7.6.2.b, for very simple
microservices (e.g., the word count example) the overhead introduced by using
flexEdge (i.e., issuing a request to the controller, fetching and instantiating the ser-
vice or redirecting the user to the running service) can outweigh the benefits. In
the previous sections, we have shown how these benefits differ with varying mi-
croservice size. For very simple microservices, executing them locally is a viable
alternative to either offloading or store-based onloading. Hence, in future use of
flexEdge, a careful partitioning of applications is required to take full advantage of
our approach. Our contribution in this chapter is meant to provide a basis for an
alternative approach to traditional offloading, which can be used following existing
partitioning strategies.

7.6.3 Performance of Chained Services

flexEdge
measured

OpenWhisk
reported

OpenWhisk
measured

0

150

300

450

600

750

Ex
ec

ut
io

n
tim

e
(m

s)

FIGURE 7.13: PERFORMANCE COMPARISON OF CHAINED SERVICES†

Lastly, we evaluate the performance of the chaining feature in flexEdge, where
multiple microservices are executed subsequently. We measure the total time it
takes to execute the entire service pipeline and return the result. We compare our
approach in which microservices are chained through a distributed message queue
(see Section 7.3.2) with the chaining as realized in OpenWhisk23, a state-of-the-art
serverless platform (see Explanation 7.3 for details).

22https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android (accessed:
2019-02-19)

23https://openwhisk.apache.org/ (accessed: 2020-02-17)

7.6. Evaluation 125

EXPLANATION 7.3: OPENWHISK

Apache OpenWhisk is a serverless cloud platform that executes functions in
response to requests or events (triggers). Its general architecture resembles
flexEdge, e.g., invoker nodes in OpenWhisk are similar to flexEdge agents, and
the OpenWhisk core node performs similar functions as our controller. Open-
Whisk executes actions, which are stateless functions that can be written in
different languages, in containers that can be managed with different frame-
works (e.g., Kubernetes or Mesos). Each invocation of an action produces an
invocation record that contains the function’s results as well as metadata about
the invocation, e.g., the execution time. Both function inputs and outputs are
mapped to key-value pairs. The subsequent invocation of different functions is
called action sequence in OpenWhisk.

Comparison of approaches. OpenWhisk stores every intermediate result of an
action (OpenWhisk terminology for a function) in an auxiliary database. For the
next function in the chain, the controller has to first fetch this result before passing
it as input to the subsequent function. Furthermore, OpenWhisk limits the size of
the data that can be passed in this way to 1 MB. For a lot of applications, this would
clearly not be sufficient. In case the size of the result exceeds the maximum value,
results have to be stored in auxiliary storage and a reference to the storage location
can be returned by the action. Selecting suitable means for ephemeral storage in
serverless platforms is an ongoing field of research [Kli+18]. Even disregarding this
restriction, we expect our approach to be much faster because intermediate results
are not passed through the controller or temporarily stored. Instead, each service
is given its chain successor as input and directly pushes the intermediate result into
the input message queue of that successor.

Performance comparison. As a benchmark to compare the chaining of services,
we use the word count chain as described in Section 7.5.1.a. For the input, we use a
pre-generated filler text with a size of 683 KB. For both flexEdge and OpenWhisk, we
use a warm start invocation of services. Figure 7.13 compares the averaged total ex-
ecution times of 10 runs. For OpenWhisk, we perform two measurements. First, we
start the chain via a blocking command line request and record the execution time
with the Unix time command (labeled OpenWhisk measured in the plot). Second,
OpenWhisk itself collects statistics about the runtime of actions (labeled OpenWhisk
reported in the plot). The slight differences in measurements occur because Open-
Whisk only starts measuring once the first action is invoked. Our measurements
include the overhead of OpenWhisk’s own message queue, to which requests are
sent before the action is invoked.

Result interpretation. The results clearly show the advantage of our chaining ap-
proach, with an execution time of the pipeline that is almost six times faster com-
pared to the reported execution times by OpenWhisk. For our own measurements
of the OpenWhisk execution time, the difference is almost 7×. Since the payload of
messages in our experiment does not exceed 1 MB (which would cause OpenWhisk
to move the results to auxiliary storage), the reduction in execution time is solely
due to the fact, that our approach does not move intermediate results to the con-
troller before passing them to the next microservice. Note that in our experiment

126 Chapter 7. Edge Computing Framework

here, we considered only two agents/invokers that along with the controller were
colocated in the same local backend network. In more large-scale deployments this
might not be the case, rendering the advantage of our approach even more im-
portant. The actual impact of function chaining is intertwined with the placement
decision of the services in the chain. For example, in our experiment reported here,
we noticed that while our approach placed all microservices on the same agent (ac-
cording to the colocation strategy presented in Section 7.4.2.a), OpenWhisk placed
the echo and word count actions on a different invoker than the split action. It is
worth noticing, however, that OpenWhisks offers additional features that we did
not consider, such as automatic scaling of service instances, and integration with
other services, e.g., databases and push notifications.

7.7 Conclusion and Outlook

In this chapter, we presented flexEdge, a flexible framework for the execution of
microservices at the edge. Most notably, we introduced the concept of store-based
onloading to avoid expensive transferring or pre-provisioning of offloadable code.
Instead, microservices are fetched from a microservice store and running service
instances can be shared across clients. We demonstrated the benefits that this ap-
proach has with regards to end-to-end latency and energy consumption on the client
device. Using our approach, we could achieve a maximum reduction in energy con-
sumption of 94 % and up to 13× lower end-to-end latency. This maximum benefit
was measured for a microservice that performs object detection, representing a real-
istic use case for Edge Computing (because of its computational complexity and pos-
sible usage in many recognition applications). In addition, providing microservices
through a store has other advantages that were not considered in detail and which
we leave for future work, such as reusability. For smaller (in terms of their size)
microservices the benefit of our approach was reduced drastically, leading to the
conclusion that—similar to current practices in offloading frameworks—onloading
also requires a careful tradeoff w.r.t. which services to execute outside the client de-
vice. We furthermore demonstrated that our approach of using distributed message
queues to realize function chaining outperforms a popular platform for Serverless
Computing.

Although flexEdge provides the basis for executing microservices at the edge, we
only touched briefly on a number of decisions that need to be taken at the controller.
Some of those decisions will be addressed later in Part IV of this thesis. For instance,
Chapter 8 will present a placement strategy for functional parts of applications. This
strategy can be implemented for the placement of microservices into the framework
that we have proposed in this section. Chapter 10 shows how microservices can be
adapted at runtime by providing different service variants. Future work should
investigate instance lifetime management in more detail, especially the tradeoff
between cold start latencies and resource utilization. Furthermore, if we assume
multiple instances of a microservice are running, efficient strategies for the user-to-
instance assignment are required.

Part IV

Strategies & Adaptations

Infrastructural Support

Control & Execution

Strategies & Adaptations

The preceding Part III introduced an Edge Computing framework based
on the concept of composable microservices. In this part, we propose
strategies and adaptations that can be implemented into such an Edge
Computing framework. Such mechanisms are invoked, e.g., when ser-
vices are requested or changes in the execution environment require
actions such as the re-placement of services.

Two chapters (Chapter 8 and Chapter 9) are concerned with placement
strategies, while Chapter 10 adapts the microservices of our Edge Com-
puting framework at runtime.

Chapter 8 presents a heuristic approach for the operator placement prob-
lem, i.e., where to place functional parts of an application. Chapter 9
extends the placement problem to data captured at the edge and pro-
poses a novel approach for providing micro-storage capabilities at the
edge by taking into account the user’s context.

While Chapters 8 and 9 make planning decisions, Chapter 10 adds the
dimension of runtime adaptations to our Edge Computing framework.
To realize this, we re-model our previously introduced concept of mi-
croservices, adding service variants and making them adaptable at run-
time, e.g., to trade runtime for computation quality.

127

CHAPTER 8

Operator Placement1

Chapter Outline
8.1 Introduction . 129

8.2 Related Work . 131

8.3 System Model and Problem Formulation 133

8.4 Heuristic Approach . 137

8.5 Testbed Implementation . 141

8.6 Evaluation . 142

8.7 Conclusion and Outlook . 151

8.1 Introduction

In the previous Part III, we have introduced a control and execution framework
for Edge Computing. This framework provides the basis to manage the lifecycle of
edge deployments. Most notably for this section, the framework has to make the
decision on where to place (connected) components of an application, given a set
of networked nodes that make a certain amount of resources available. This section
will be focused on precisely that decision.

Placing topologies of processing units onto network topologies has been widely
researched, e.g., in the context of complex event processing (CEP), and labeled op-
erator placement. Operators in a broad context are functional components, often
lightweight, that carry out a specific task. Operators can be further characterized
by certain properties, such as their resource requirements and required bandwidth
(e.g., for forwarding the result of a computation). In the majority of cases, opera-
tors do not stand alone, but are part of an operator graph, i.e., a chain of multiple

1Large parts of this chapter are verbatim copies from [Ged+18e]. Those text segments are printed in
gray color. Tables and figures taken or adapted from this publication are marked with † in their caption.

129

130 Chapter 8. Operator Placement

operators. The edges in such a graph represent the logical flow of data between
operators for subsequent computing steps.

For these reasons, the lightweight microservices of our Edge Computing frame-
work as defined in Section 7.3.1, can be considered as one example of operators.
Another example would be function-as-a-service instances (see Section 7.2.3) or
application-level remote application procedure calls (RPCs). In this section, we
will therefore examine the placement of microservices in the terminology of the
established problem domain of operator placement. While this includes some re-
strictions on our model, e.g., w.r.t. the topology of operator graphs (see Section 8.2
and Section 8.3.2) the placement strategies presented in this chapter can be applied
to a number of applications in the domain of Edge Computing, e.g., in streaming
analytics where data originates from sensors at the edge.

The motivation for this chapter stems from the fact that solving large instances
of the operator placement problem optimally is computationally hard [EL16] and,
thus, unfeasible in practice. However, in many cases, placement decisions have to
be made quickly. For instance, offloading computations often happens on-demand,
when a certain service is requested. Delays in the placement decision slow down
the overall provisioning process for that service, which can lead to unsatisfactory
experiences for users. Being able to make placement decisions quickly also allows
for frequent reconfiguration. For instance, this is required in case of user mobility
or changes in service demands. Therefore, reducing the time it takes to compute
an assignment of operators to network nodes is crucial in large-scale dynamic en-
vironments.

While the general operator placement problem has been extensively researched,
some of the existing works consider homogeneous environments, e.g., the place-
ment of operators or network functions in data centers, and focus on the optimiza-
tion of either resource consumption of computing nodes or on network metrics.
However, we have seen that this does not represent an Edge Computing environ-
ment, where available resources and network conditions are heterogeneous in var-
ious aspects. When mapped to such a heterogeneous environment, the placement
problem becomes more challenging.

Overview of approach. Following the discussion from Section 2.1, we want to
include all resources on the continuum between end users and the cloud in our
model. To model the difference between very proximate resources and those further
in the core network, we introduce an architecture as a reference model that consists
of three tiers: edge, fog, and cloud nodes. The nodes typically differ across the
tiers in terms of placement cost, link quality, and computational capacity. Because
these tiers help us to capture various (edge) computing devices, we summarize the
problem this chapter addresses with the general term in-network operator placement
problem (INOP).

We propose a heuristic approach that works by modifying the input to an ILP
model that represents the INOP problem. More specifically, we introduce con-
straints on the placement decisions that reduce the solution space, and hence, the
solving time. These constraints exploit the characteristics of the individual tiers
of our edge-fog-cloud architecture and the topologies of both the network and the
operator graphs. To this end, we define three general heuristic approaches: (i)
restricting the placement of a certain operator to a subset of nodes, (ii) fixing the
placement of an operator to exactly one node (pinning), and (iii) enforcing the

8.2. Related Work 131

colocation of operators on the same nodes. For each of our heuristic approaches,
we implement example instances to demonstrate the feasibility of this approach.
Besides the individual heuristics, we also investigate their combination. We show
that this approach considerably reduces the time required to compute a placement
decision while only leading to a small optimality gap.

Summary of contributions. In summary, this chapter provides three main con-
tributions:

• We define a model for the heterogeneous in-network operator placement
problem (Section 8.3). We formulate this problem in the context of a 3-tier
architecture consisting of edge, fog, and cloud nodes.

• We propose an approach for reducing the solving time of the placement prob-
lem by using heuristics that modify the original placement problem. Sec-
tion 8.4 introduces three general classes of such heuristics: (i) placement
restriction, (ii) operator pinning, and (iii) operator colocation.

• For each of these classes, we implement representative instances in a testbed
(Section 8.5). Furthermore, besides applying the heuristics individually, we
suggest three combinations of them. We evaluate our approach with respect
to the reduction in the solving time of the problem and the introduced opti-
mality gap (Section 8.6).

8.2 Related Work

The problem of operator placement has been studied extensively, especially in the
context of (distributed) stream processing [Che+03; Ste97] and (distributed) com-
plex event processing (CEP) [CM12; CM13]. Lakshmanan et al. [LLS08] survey and
classify placement strategies for stream processing systems. The authors present a
general definition of the placement problem, in which operators in a logical flow
graph are assigned to processing nodes in a physical topology. Besides operators,
a logical flow graph contains data sources (termed producers) and sinks (termed
consumers). Our model (see Section 8.3) shares these basic characteristics in its
definitions of operator graphs and an underlay network. In addition, the survey
provides an analysis regarding which of the surveyed approaches is applicable in
which domain. Hirzel et al. [Hir+13] survey different optimization mechanisms
for stream processing. Among the optimization mechanisms, placement is defined
as assigning operators to hosts and cores. An important observation of the survey
is that placement trades communication costs for resource utilization when several
operators are placed on the same host. In the colocation heuristic we will intro-
duce in Section 8.4.3, we will consider this observation to enforce the colocation of
certain operators.

Network-awareness. We can distinguish between network-agnostic [Che+03;
Pen+15] and network-aware approaches [Pie+06; RDR10; ZA08]. The former do
not consider network characteristics (e.g., the latency and available bandwidth on
the links), while the latter do. Considering network characteristics is crucial in the
Edge Computing scenarios we examine because delays have a considerable impact
on the delivered quality-of-service. It therefore makes sense to consider both the

132 Chapter 8. Operator Placement

network and the resource dimension (i.e., how many resources are available at
specific nodes and what the costs of placing functionality on the nodes are). Our
proposed model considers both the network and the resource dimension in the
operator placement problem.

Pietzuch [Pie+06] and Rizou [RDR10] present approaches to minimize the net-
work usage. However, they do not consider the differences in placement costs
or constraints such as available bandwidth on the network links. Carabelli et al.
[Car+12] present a linear programming relaxation for a placement problem that
minimizes the bandwidth-delay product.

Homogeneous vs. heterogeneous environments. Similar to our work, Cardellini
et al. [Car+16] provide a comprehensive model for the operator placement prob-
lem. However, in their scalability analysis of the problem, only a homogeneous
environment is considered. Nardelli et al. [Nar+19] consider a heterogeneous
environment to place components of a stream processing system. However, the
authors do not model the different locations of data sources and sinks along the
edge–cloud continuum. Similarly, Sharma et al. [Sha+11] investigate the task
placement problem in an heterogeneous environment that is limited to Cloud
Computing infrastructure.

Unrealistic assumptions for Edge Computing environments. Several works
such as [ZA08] and [Hua+11] do not allow the placement of multiple operators on
one node, or consider an equal number of operators and nodes [MK16]. We argue
that these are unrealistic assumptions for Edge Computing scenarios. Especially
the first is in stark contrast to multi-tenant Edge Computing environments (see
Section 3.5.2). Others assume uniform capacity of the processing nodes [EL16] or
restrict the underlying topology, e.g., to a tree topology [SP15]. In contrast, our
heuristics do not have these restrictions.

Comparable approaches. User-defined constraints for the placement are intro-
duced in [TLL14], but no network costs are taken into account. Furthermore, the
constraints have to be specified manually by the user. In contrast, our approach
automatically generates placement constraints from a given problem input and the
characteristics of our 3-tiers of edge, fog, and cloud nodes. Closest to ours is the
work of Bahreini and Grosu [BG17]. The authors propose a heuristic approach
to the placement problem of multi-component edge applications. Contrary to our
problem formulation, they take into account user mobility but do not model three
tiers of data source and link locations—something we argue is crucial to capture
the real-world characteristics of edge applications.

Comparison to similar problems. The problem of operator placement has some
similarities to the virtual network embedding (VNE) problem, e.g., the placement
of virtual network functions [Coh+15]. Similarly, Even, Rost, and Schmid [ERS16]
investigate the problem of placing SDN functions. However, virtual network em-
bedding mostly deals with the placement of virtual networks or virtual network
functions in data center environments [Wan+15]. Compared to the problem we ad-
dress in this chapter, the infrastructure on which the network functions are placed
is more homogeneous w.r.t. the resources they offer. In contrast to that, we address

8.3. System Model and Problem Formulation 133

TABLE 8.1: NOTATION OF THE INOP PROBLEM

V Set of underlay nodes

SRC Set of data sources

SNK Set of data sinks

E Set of underlay edges

G = (V ∪ SRC ∪ SNK , E) Underlay graph

Cv Node capacity

Be Link bandwidth

O Set of operators

wo Operator workload

F Set of edges in the operator graph

fo1,o2
Bandwidth requirement of data flow between operators

H = (O ∪ SRC ∪ SNK , F) Operator graph

xo,v Binary decision variable for operator placement

yu,v
o1,o2

Binary decision variable for routing of operator flows

α Cost weight factors

po,v Placement cost

P Aggregated placement costs

qu,v Link cost

Q Total link cost

the heterogeneity of nodes on the different tiers (edge, fog, and cloud). Further-
more, existing work on VNF placement considers only one data source [Lui+15],
whereas our operator graphs can have multiple data sources.

In some peer-to-peer networks, dedicated nodes, referred to as brokers exist.
Brokers are intermediaries and relay information between regular nodes in the net-
work (e.g., to implement discovery mechanisms). Placing such brokers is often
done w.r.t. to the latency when the given brokers are overloaded [GES08].

Summary. In conclusion, related work in the domain of operator placement
comes mostly from the domains of (distributed) stream processing and (distributed)
complex event processing. It is worth noting that—same as our model—works from
this domain assume a restricted topology of the operator graph(s), in the sense that
they are acyclic. While we adopt these limitations, our approach differs in the
sense that we operate on a network of nodes in a 3-tier architecture of edge, fog,
and cloud nodes. Based on this architecture, we define placement constraints in a
heterogeneous (w.r.t. resources and connection characteristics) network topology.

8.3 System Model and Problem Formulation

In this section, we describe the formal model for the in-network operator placement
(INOP) problem. Based on the introduced model, we formulate the placement prob-
lem with an integer linear program (ILP). A summary of the notation can be found
in Table 8.1.

134 Chapter 8. Operator Placement

8.3.1 Underlay Network

We define the underlay network as the joint representation of networked nodes on
which computations can be carried out, the producers and consumers of data (here-
inafter termed sources and sinks), and the physical interconnections between them.
This definition is in line with common models for the placement problem in stream
processing systems (see [LLS08]). Hence, the underlay models our infrastructure
for computation and communication. We model the underlay network as an undi-
rected graph G = (V ∪ SRC ∪ SNK , E), where V is the set of nodes that can host
operators. In addition, there are two special types of nodes that represent sources
that emit data to be processed (SRC) and sinks where the result of the processing is
to be delivered (SNK). These nodes can for example represent sensors, or actuators
at the start and end of an execution pipeline, following the model of CEP and stream
processing. E = {〈u, v〉 |u,v∈V∪SRC∪SNK} denotes the set of links interconnecting the
nodes.

Each node v ∈ V has a capacity Cv , which denotes the maximum computational
load that node v can handle. We can easily model the case where the node is
not part of the computing infrastructure (for example, where it just represents a
forwarding middlebox) by setting Cv = 0 for that particular node. For each link
e = 〈u, v〉 ∈ E, we consider that its capacity is upper-bounded by its bandwidth
Be. Note that multiple data streams (e.g., from different operator graphs, see next
Section 8.3.2) may be routed through one underlay link, and therefore, the upper
bound applies to the aggregated data flows on that link. We assume that routing
in the network is according to shortest paths, which is in line with current data
communication networks.

8.3.2 Operator Graphs

In our in-network processing scenario, data is generated by the sources nodes,
processed by a well-defined series of operators and ultimately transferred to data
sinks. Operator graphs are linear sequences and can have multiple source and sink
nodes. We model this logical flow of data as an operator graph, which is a directed
acyclic graph (DAG) H = (O∪ SRC ∪ SNK , F), where O is the set of operators, and
SRC and SNK the same set of data sources and sinks as defined in Section 8.3.1.
F ⊆ {〈o1, o2〉 |o1,o2∈O∪SRC∪SNK} represents the data flows between the operators,
sources and sinks. Note that H can also be used to represent multiple operator
graphs by including them as edge-disjoint subgraphs into H. Each operator o ∈ O is
characterized by a workload wo, which represents the computational capacity that
is required to execute the operator. For each flow 〈o1, o2〉 ∈ F , fo1,o2

denotes the
average bandwidth requirement for the transfer of data between nodes in the oper-
ator graph. For the placement, we assume that there is at least one link from each
source node that satisfies this source’s outgoing bandwidth demand, i.e.,

∀src ∈ SRC ∃(src, o) ∈ E : Be ≥ fsrc,o (8.1)

8.3.3 Operator Placement

The INOP problem aims to make decisions on the placement of operators from an
operator graph on the underlay nodes, i.e., the actual computing resources. To
capture the structure of this decision-making, we use binary decision variables as
follows. We introduce xo,v ∈ {0,1}, which characterizes the placement decision of

8.3. System Model and Problem Formulation 135

each operator o ∈ O to every underlay node v ∈ V . We set xo,v = 1 if operator o
is placed on node v; otherwise xo,v = 0. Every placement decision is unique and
operator workload cannot be fragmented, i.e., an operator can only be placed on
exactly one node. We model this through the following constraint:

∑
v∈V

xo,v = 1,∀o ∈ O. (8.2)

In addition, operators have to be placed subject to node capacity constraints, i.e.,
∑
o∈O

xo,vwo ≤ Cv ,∀v ∈ V. (8.3)

For a pair of operators o1 ∈ O and o2 ∈ O, where 〈o1, o2〉 ∈ F and each underlay
link 〈u, v〉 ∈ E, we introduce indicating variables yu,v

o1,o2
∈ {0,1} to represent whether

flow 〈o1, o2〉will be routed through underlay link 〈u, v〉. Note that in practice, many
instances of this variable are zero, because it has to be set for every possible com-
bination of flows between operators and underlay links. However, modeling the
problem in such a way is practical for ILP solvers in order to aggregate the con-
sumed bandwidth on an underlay link. The bandwidth constraints for the underlay
links should not be violated, i.e.,

∑
〈o1,o2〉∈F

yu,v
o1,o2

fo1,o2
≤ Bu,v ,∀〈u, v〉 ∈ E. (8.4)

As we adopt shortest-path-based routing in the underlay network, yu,v
o1,o2

actually
depends on both xo1,v and xo2,v . More specifically, for all 〈o1, o2〉 ∈ F , we have

xo1,u =
∑
v∈V

yu,v
o1,o2

and xo2,v =
∑
u∈V

yu,v
o1,o2

. (8.5)

8.3.4 Cost Model

The objective of the INOP problem is to make placement decisions to achieve cost-
effectiveness. We consider two types of costs, namely, placement costs and link
costs. Because we want to address the placement problem in the context of dif-
ferent stakeholders (see Section 3.4), we assume heterogeneous costs for placing
operators on nodes. Besides representing different underlying business models of
the stakeholders, the heterogeneous placement costs can also model varying tech-
nical efforts that are required to execute a certain operator. This is also dependent
on both the operator and the underlay node. Hence, for a given operator o ∈ O and
a given node v ∈ V , the placement cost is given by po,v . With this definition, the
aggregated placement cost is given by

P =
∑
o∈O

∑
v∈V

po,v xo,v . (8.6)

For each link 〈u, v〉 ∈ E in the network, a cost qu,v is associated with that link. This
cost attribute can be used to represent quality-of-service (QoS) attributes such as
latency or the monetary cost for using the link. These link costs occur whenever

136 Chapter 8. Operator Placement

data flows on the (logical) edges of the operator graph use a physical link in the
underlay. The total link costs are therefore given by

Q =
∑

〈u,v〉∈E

∑
〈o1,o2〉∈F

qu,v · yu,v
o1,o2

. (8.7)

We believe that the above two cost types are both practical and generic enough
to capture a wide range of real-world performance metrics. To model tradeoffs
between the two costs, we introduce a parameter α ∈ [0,1] to weigh the different
costs. Given these definitions, the total cost for a placement decision is given by

Cost = αP + (1−α)Q. (8.8)

EXAMPLE 8.1: PLACEMENT EXAMPLE

n1

SRC

n3

n2

n4

n5

n6

SNK

SRC 01 02 03 SNK

U
nd

er
la

y
N

et
w

or
k

O
pe

ra
to

r
G

ra
ph

This figure shows a simple instance of
the placement problem. Source-sink
pinnings are shown by the solid red
lines. Blue dashed lines represent a
possible result as returned by a place-
ment algorithm. In our evaluation, we
will consider a more complex under-
lay network as well as different types
of operator graphs.

8.3.5 Problem Formulation

Based on the presented model, we formulate the INOP problem as follows: For a
given underlay network and operator graphs2 find an assignment for each operator
to an underlay node, such that the cost function (8.8) is minimal. An example of
an outcome for a placement decision is shown in Example 8.1. More formally, we
formulate the problem with the following integer linear program (ILP).

min Cost

s.t. (8.2), (8.3), (8.4)
xo,v ∈ {0, 1}, ∀o ∈ O, ∀v ∈ V.

This ILP model is the basis for our evaluation of placement approaches. Section 8.5
will detail how we expressed the INOP problem in a testbed implementation using
a modeling language for optimization problems.

8.3.6 Edge-Fog-Cloud Architecture

Contrary to previous works in this domain, we examine the placement problem
specifically in the context of in-network processing, where we consider the network
to be in a 3-tier architecture, consisting of edge, fog and cloud nodes. This dis-
tinction follows the (sometimes subtle) distinction between edge and fog that is

2Recall that our model of operator graphs as described in Section 8.3.2 allows to represent multiple
operator graphs using the set notation of one DAG.

8.4. Heuristic Approach 137

CLOUD

FOG

EDGE

CLOUDCLOUDCLOUD

FIGURE 8.1: 3-TIER ARCHITECTURE OF EDGE, FOG, AND CLOUD NODES

commonly found in literature (see Section 2.1). It is important to note that the
tiers include computing nodes as well as data sources and sinks, since those can
also be located in different tiers. Cloud nodes represent data center infrastructures
while fog nodes are middleboxes or gateways for end devices. Edge nodes are the
end devices or devices in immediate proximity of the user. These different types of
nodes allow us to model the different characteristics of the devices encountered in
the respective tiers, e.g., with regards to their capacity and network connectivity.
For our placement heuristics, we can further leverage the specifics of these 3 tiers.
Note that contrary to, e.g., the definitions of MEC3, we model powerful resources
at gateways to be in the fog tier. As an example, depending on the locations of the
sources and the sinks, we can restrict the placement of operators to a certain subset
of underlay nodes, such as underlay nodes in a certain tier. Figure 8.1 shows the
3-tier architecture with example devices in each tier.

EXPLANATION 8.1: NETWORK TOPOLOGY

We assume cloud nodes to be fully connected, fog nodes to resemble a
LAN/WAN topology, and edge nodes to have a connection to at least one fog
node that acts as a gateway for this edge node. Edge nodes are organized in
clusters, depending on which fog node they are connected to. Furthermore,
edge nodes have a probability to be connected to more than one fog node and
an ad-hoc connection probability to other edge nodes.

8.4 Heuristic Approach

To reduce the solving time of the placement problem, i.e., the time it takes to com-
pute a placement, we propose an approach in which we modify the original problem
input. We use an ILP solver to compute both the optimal solution and a solution

3Mobile Edge Computing, see Section 2.1

138 Chapter 8. Operator Placement

(a) Restriction (b) Pinning (c) Colocation

FIGURE 8.2: HEURISTICS FOR OPERATOR PLACEMENT†

that uses our heuristics. For the optimal solution, the input file for the solver con-
tains only the definition of the underlay and operator graphs. In addition, we are
also given a matrix of the placement costs, depending on the operator and under-
lay node. Our heuristics modify the original input problem for the solver in such a
way that additional constraints on valid placements are added. More specifically,
we impose a set of extra constraints on the placement decision variables xo,v . As
demonstrated in other publications [TLL14], adding constraints can lower the time
necessary to compute a solution. Note that we use the term heuristics in a general
sense to denote a practical approach to simplify a complex problem. Our heuristics
do not change the computational complexity of the INOP problem but—as will be
shown in Section 8.6.2—lead to considerably reduced solving times, making our
approach applicable in practice.

In the following, we propose three general classes of heuristics that follow this
approach: (i) placement restriction, (ii) operator pinning, and (iii) operator coloca-
tion. All three impose constraints on the placement decisions that allow to naturally
model properties of our 3-tier model as presented in Section 8.3.6. For example,
colocation can reduce expensive bandwidth transfers between nodes that are lo-
cated in different tiers, while restriction and pinning can be used to enforce non-
functional requirements, such as keeping one’s computations on trusted nodes only.

8.4.1 Placement Restriction

Placement restrictions limit the placement of an operator to a subset of nodes (see
Figure 8.2(a)), i.e., for each o ∈ O, we define a subset V ′ ⊂ V and we set

∑
v′∈V ′

xo,v = 1. (8.9)

This heuristic can be used to enforce the placement on nodes with desired proper-
ties, such as low placement cost, good link connections, or proximity to the sources
and the sinks. In real-world deployments, one might also want to restrict certain
operations to a specific geographic region, e.g., because of privacy considerations.
We implement this heuristic as follows: for each connected sub-graph of the op-
erator graph H, we determine the locations of the sources and the sinks, i.e., on
which network tier they reside. If at least one of the sources or sinks are located in
the cloud tier, we restrict the placement of the operators in the graph to the cloud
and fog nodes only. However, if either a source or sink is located at the edge of
the network, we try to avoid expensive cloud links and restrict the placement of all
the operators to either the edge or fog tier. It is important to note that we do not
consider fog nodes to be either the source or sink of data, since we consider them

8.4. Heuristic Approach 139

to be network middleboxes or gateway nodes that do not produce or consume ap-
plication data. Our placement restriction approach can be formalized as follows:

min Cost

s.t. (8.2), (8.3), (8.4), (8.9)
xo,v ∈ {0, 1}, ∀o ∈ O, ∀v ∈ V, ∀v′ ∈ V ′,
V ∩ V ′ = �.

8.4.2 Operator Pinning

Operator pinning is the most restrictive heuristic. It enforces the placement of an
operator to one particular node as depicted in Figure 8.2(b). Therefore, it can
be considered a special case of the more general restriction heuristic described in
Section 8.4.1. However, the rationales we use for determining the restriction and
pinning are different. Restrictions operate based on the locations of the data sources
and sinks in the different tiers, while for the pinning, we try to find a suitable un-
derlay node in proximity of sources and sinks, irrespective of their locations in the
tiers. Therefore, we treat restriction and pinning as different types of heuristics.
According to our model, for a pinned operator-node pair (v ∈ V, o ∈ O), we set
xo,v = 1 to represent the restrictions introduced by this heuristic.

For the operator pinning heuristic, we implement the following logic: for each
operator graph, we try to pin the first operator, i.e., the one adjacent to one or
multiple source nodes. For the candidate nodes to place this operator, we have
to distinguish between two cases: (i) a single source and (ii) multiple sources con-
nected to the operator. In the first case, candidate nodes are the source node and its
one-hop neighbors in G. In the second case, we consider the 2-hop neighborhoods
of each of the sources. Out of these subgraphs, we define the candidate nodes as
all nodes that appear in all these 2-hop neighborhoods. Then, for each candidate
node v, we compute a penalty function

s = αpo,v + (1−α)q̄v , (8.10)

where o is the operator to be placed, po,v is the placement cost and q̄v is the av-
erage link cost of the edges that are adjacent to v. We then pin the operator
to the node with the lowest penalty value, since this node will have the lowest
weighted placement and link costs to host this operator. Consequently, we obtain a
set P = {(o1, v1), . . . (on, vn)} of all operator-node pinnings and it must hold that

∀(oi , vi) ∈ P : xoi ,vi
= 1. (8.11)

Applied to our original model, pinning results in the following optimization prob-
lem:

min Cost

s.t. (8.2), (8.3), (8.4), (8.11)
xo,v ∈ {0,1}, ∀o ∈ O, ∀v ∈ V, P ∩ V = �.

140 Chapter 8. Operator Placement

8.4.3 Operator Colocation

While our model naturally allows for operators to be colocated on one node, this
heuristic enforces the colocation of certain operators to one underlay node. For-
mally, we define a pair of operators (o1 ∈ O, o2 ∈ O), and it must hold true that
∃v ∈ V , xo1,v = xo2,v = 1. As an example, Figure 8.2(c) depicts the colocation
of operators o2 and o3. The colocation of operators requires a tradeoff between
placement costs and communication costs. Consider a scenario where operator o1
precedes operator o2. Colocating these two operators on one underlay node is most
likely beneficial to the overall utility of the system if operator o2 is lightweight in
terms of resource utilization and placement costs, and the communication between
o1 and o2 requires high bandwidth. To model this, we compute a score for each pair
of neighboring operators o1 and o2, i.e., 〈o1, o2〉 ∈ F , defined by

s =
fo1,o2

α(p̄o1,v + p̄o2,v + wo1
+ wo2

)
, (8.12)

where fo1,o2
is the bandwidth of the flow between the two operators, p̄o,v denotes

the average placement cost of the operator (across all underlay nodes) and wo the
workload of the operator. Since colocation does not restrict the set of nodes on
which the colocated operators can be placed, we choose the sum of the average
placement cost across all underlay nodes to represent the impact of the costs. Note
that this can be replaced by other metrics, such as the median value or a certain
percentile. The score will favor the colocation of operators with high bandwidth
demands, while taking into account their placement costs and workload. We then
select no operator pairs with the highest score to colocate. Empirically, we deter-
mined no = �|O|/5� to be an appropriate value. Mapped to our optimization prob-
lem, we then get a set OC = {(o1, o2), . . . (on, on+1)} for which the following must
hold:

∀(oi , oj) ∈ OC : ∃v ∈ V, xoi ,v = xoj ,v = 1 (8.13)

Our modified problem for the colocation of operators can therefore be defined as
follows:

min Cost

s.t. (8.2), (8.3), (8.4), (8.13)
xo,v ∈ {0,1}, ∀o ∈ O, ∀v ∈ V, OC ∩ V = �.

8.4.4 Strategies for Combining Heuristics

While the three heuristics described above can be applied individually, we can think
of ways to combine them, i.e., to apply more than one heuristic for a given input
problem. Figure 8.3 shows a flowchart that describes the different possible ways of
combining our heuristics. We first have the option to pin certain operators to an un-
derlay node. Then, the more general, i.e., less restrictive, heuristics restriction and
colocation can be applied independently. It is important to note that these combina-
tions do not work in isolation but influence each other and might be contradictory.
This is especially true for the pinning heuristic. We consider the following three
combinations of heuristics:

8.5. Testbed Implementation 141

FIGURE 8.3: FLOWCHART DENOTING THE SEQUENCE OF PLACEMENT HEURISTICS†

COMB-1: PINNING → RESTRICTION | As the first combination, we apply pinning
and then restriction of operators. Note that the restrictions will not be applied
to already pinned operators, because this might lead to contradictions, e.g.,
the pinning computes the placement of an operator to a node which is not in
the set of possible nodes according to the restriction heuristic.

COMB-2: PINNING → COLOCATION | For this combination, we first apply pinning
and additionally the colocation of operators. Similar to COMB-1, operators
that are pinned will not be in the candidate set considered for colocation. For
example, consider that the pinning heuristic fixes the placement of an oper-
ator o1 on a node A, and the colocation heuristic enforces the colocation of
operators o1 and o2, but the capacity of node A is less than the workload of o1
and o2 combined. Therefore, when pinning is applied before other heuristics,
we do not consider the pinned operators for other heuristics applied after-
ward.

COMB-3: RESTRICTION� COLOCATION | Lastly, we leave out the pinning heuristic
and combine restriction with colocation. Contrary to the previous combina-
tions, this does not require the exclusion of operators from the heuristic that
is applied second and, hence, the two heuristics can be applied in arbitrary
order.

8.5 Testbed Implementation

To evaluate our placement heuristics, we built a simulation-based testbed. Its
main components are implemented in Python. Figure 8.4 shows the compo-
nents of the testbed. The main component that carries out the simulations
(simulation.py) takes a configuration file as input. This file specifies the
simulation parameters, such as the sizes or properties of input graphs. Accord-
ingly, a graph generator (graphgen.py) is responsible for creating underlay

142 Chapter 8. Operator Placement

and operator graph inputs. Our proposed heuristics are implemented in sepa-
rate source files (heuristics_restriction.py, heuristics_pinning.py,
and heuristics_colocation.py) and the heuristic’s functionalities called from
the main simulation component.

We used Pyomo4 as a tool to model the ILP problem in Python. The file
model.py implements our model as defined in Section 8.3. The complete source
code of the model can be found in Appendix F. Another component of our sim-
ulation utilities (solver.py) is responsible for interacting with the concrete ILP
solver. It submits the (modified) problem to the solver and parses the results (i.e.,
the placement decisions and the time the solver took). Pyomo features support for
different solvers. For our evaluation, we used the GNU Linear Programming Kit5

(GLPK) as a solver for the ILP problem.

FIGURE 8.4: TESTBED IMPLEMENTATION

8.6 Evaluation

Using our implemented testbed as described in the previous Section 8.5, we now
evaluate our approach. We first describe our experimental setup (Section 8.6.1).
Our evaluation quantifies the gain in resolution time for the placement (Sec-
tion 8.6.2) and the optimality gap of the heuristic-based solutions (Section 8.6.3).
We further discuss and compare our results in Section 8.6.4.

8.6.1 Experimental Settings

8.6.1.a Underlay network

For our evaluation, we define three network underlays of different sizes. Their char-
acteristics are shown in Table 8.2. To take into account the different characteristics
of nodes and connections in the different tiers, Table 8.3 summarizes the values we
set for the capacity, link costs, and available bandwidth. The parameters for the
underlay networks were chosen such as to represent the differences in the devices’
characteristics on each tier. Recall that the link cost property can be used to model
different properties related to the usage of that particular link, e.g., the latency.

4https://www.pyomo.org/ (accessed: 2019-11-13)
5https://www.gnu.org/software/glpk/ (accessed: 2019-11-13)

8.6. Evaluation 143

TABLE 8.2: UNDERLAY NETWORK†

Underlay 1 Underlay 2 Underlay 3

Cloud nodes 2 5 10

Fog nodes 5 10 20

Edge clusters 2 3 5

Edge nodes 16 36 70

Edge-fog

connection 0.1, 0.3 0.1, 0.3, 0.2 0.1, 0.3, 0.2, 0.1, 0.4

probability

Edge ad-hoc

connection 0.1, 0.3 0.1, 0.3, 0.2 0.1, 0.3, 0.2, 0.1, 0.4

probability

TABLE 8.3: PROPERTIES OF NODES†

Cloud nodes Fog nodes Edge nodes

Capacity 100 random(20,60) random (5,20)

Link cost � (200, 2500) � (20,4) � (5, 1)
Bandwidth 10 000 random(1000,5000) random(10,30)

8.6.1.b Operator graphs

To represent different types of applications that are to be deployed in the network,
we define different types of operator graphs, as shown in Figure 8.5. They differ
in the number of operators (labeled oi), sources (labeled src), and sinks (labeled
snk). In addition, the sources and sinks are located in different tiers of the underlay
network. This allows us to capture a variety of application scenarios for in-network
processing. In detail, we consider four different types of operator graph topologies:

(i) EDGE ANALYTICS | In edge analytics (see Figures 8.5(a), 8.5(b), 8.5(c), 8.5(i),
and 8.5(j)) both data sources and data sinks are located at the edge. These
operator graphs can for example model the time-critical analysis of sensor
data that is gathered at the edge and then fed back to local actuators, e.g., in
IoT scenarios as described in Section 4.2.3.

(ii) BIG DATA ANALYTICS | Contrary to edge analytics, the results of big data ana-
lytics (see Figures 8.5(d), 8.5(k), 8.5(l), and 8.5(m)) are transferred to the
cloud. The motivation for this is that the cloud offers virtually unlimited stor-
age to archive the results. In addition, longer-running analytic tasks are also
typically carried out in the cloud.

(iii) HYBRID SINK LOCATIONS | Figures 8.5(e) and 8.5(f) depict examples of oper-
ator graphs where the sinks are both located at the edge and in the cloud.
This is therefore a hybrid case between the two preceding types. Mapped to
a real-world example, this could model an application where the results of a

144 Chapter 8. Operator Placement

processing pipeline are required for immediate actuation at the edge and also
archived in the cloud.

(iv) HYBRID SOURCE LOCATIONS | Besides hybrid sink locations, the sources of the
data could also be located at different tiers, as shown in Figures 8.5(g) and
8.5(h). This type of operator graph models applications that require both
data sourced at the edge (e.g., contextual data from the environment) and
from the cloud (e.g., retrieved from large databases) for their computations.

TABLE 8.4: INPUT SIZES FOR THE OPERATOR GRAPHS†

Operator Source Sink

Graphs / Sources Sinks locations locations

Operators (Edge / (Edge /
Cloud) (Cloud)

gs1 5 / 17 8 6 8 / 0 4 / 2

gs2 6 / 20 10 8 10 / 0 4 / 4

gs3 7 / 24 11 9 10 / 1 4 / 5

gs4 8 / 28 14 11 11 / 3 5 / 6

gs5 9 / 32 15 12 12 / 3 6 / 6

gs6 10 / 35 17 15 13 / 4 8 / 7

gs7 11 / 39 19 16 15 / 4 9 / 7

gs8 12 / 44 20 17 16 / 4 10 / 4

gs9 13 / 47 21 19 17 / 4 12 / 4

gs10 14 / 50 22 20 17 / 5 12 / 5

gs11 15 / 54 25 22 20 / 5 13 / 6

From these different types of operator graphs, we generate varying input prob-
lem sizes by combining different types of operator graphs. In total, we consider 11
different operator graph inputs, labeled gs1 through gs11. Their properties, such
as the number of operators, sources, and sinks are summarized in Table 8.4. Ap-
pendix G details which operator graphs are contained in the different inputs. The
operators were assigned a random workload between 2 and 5. The required band-
width between the operators varies between 5 and 20. Placement costs are also
randomly generated within the range of 10 to 30. We perform the evaluation using
every combination of underlay size and operator graphs described above. For every
combination, we report the average results of 5 simulation runs. We set α = 0.5,
meaning that placement and link costs are weighted equally.

8.6.2 Performance Analysis

First, we analyze the performance of our proposed heuristics, i.e., the reduction
in solving time for the placement problem. Figure 8.6 shows the results of this
analysis for the different underlay network sizes. The overhead, i.e., the time it
takes to compute the placement constraints of the heuristics and apply them to the
initial mode, is included in the measurement times reported in this section.

8.6. Evaluation 145

src

src

o1 o2 o3 snk

EDGE EDGE

(a) Edge analytics #1

sr c

sr c

o1 o2 o3snk

EDGE EDGE

(b) Edge analytics #2

(c) Edge analytics #3

src

src

o1 o2 o3

snk

EDGE CLOUD

snk

(d) Big data analytics #1

src

src

o1 o2 o3

snk

snk

EDGE

CLOUD

EDGE

(e) Hybrid sink locations #1

src o1 o2 o3

EDGE

o4

src

src

snk

snk

CLOUD

EDGE

(f) Hybrid sink locations #2

src o1 o2 o3

EDGE

o4

src

src

CLOUD
snk

snk

CLOUD

EDGE

(g) Hybrid source locations #1

sr co1 o2 o3

EDGE

sr c

sr c
CLOUDsnk

snk

CLOUD

EDGE

(h) Hybrid source locations #2

(i) Edge Analytics #4

src o1 o2 o3 s4n

EDGE EDGE

ok

(j) Edge analytics #5 (k) Big data analytics #2

src o1 o2 o3 s4n

EDGE CLOUD

ok

(l) Big data analytics #3 (m) Big data analytics #4

FIGURE 8.5: OPERATOR GRAPH TOPOLOGIES USED IN THE EVALUATION†

Except for applying the colocation heuristic alone, all the approaches reduced
the resolution time, regardless of the size of the underlay network or operator graph
input size. Colocation alone can increase the resolution time because it can make
the modified problem more complicated to solve. All our other approaches consid-
erably reduce the resolution time. For the different problem input sizes, we were
able to achieve decreases of 20 to about 95 percent on average. It is important to

146 Chapter 8. Operator Placement

(a) Underlay 1

(b) Underlay 2

(c) Underlay 3

FIGURE 8.6: EVALUATION RESULTS ON THE RESOLUTION TIME†

8.6. Evaluation 147

emphasize three general observations:

(i) There is a general trend of a larger decrease in resolution time as the size
of the problem input increases, meaning that for larger problem instances—
as likely in dense Urban Edge Computing environments—we expect our ap-
proaches to be even more beneficial.

(ii) We achieve the reduction in resolution time by specifying simple (in the sense
that they are easy to determine and naturally consider the characteristics and
topologies of Edge Computing environments) placement constraints.

(iii) The savings in resolution time can have a substantial impact in practice,
changing unacceptable delays in the provisioning of services to much shorter,
acceptable delays. As an example, for one problem instance of gs7 in Under-
lay1, an optimal solution was computed in 19.15 s, while our best heuristic
(in this case the combination of pinning and restriction) led to a solving time
of 0.81 s. Included in that time are 0.03 s it took to compute the heuristic and
apply it to the original problem input.

Out of the implemented approaches, applying pinning together with restriction
was the fastest most of the time. However, we will see in the next subsections that
this is also the approach that introduces the largest optimality gap. Pinning alone
gives us less benefit for the resolution time because only the first few operators are
pinned. Furthermore, fixing the first operator might add complexity for the place-
ment of the remaining operators in the graph. When also applying colocation after
pinning, the resolution time is lowered because fewer reasonable placement options
are available. In our experiments, restriction and restriction alongside colocation
performed similarly w.r.t. the benefit in resolution time.

8.6.3 Optimality Gap

Applying our heuristics will inherently lead to a decrease in the system utility, i.e.,
the value of the cost function (Equation (8.8)) will increase. However, given the
benefits regarding the resolution time, this is a tradeoff one might be willing to ac-
cept in practice. Especially in highly dynamic scenarios, reconfiguring placement
decisions is time-critical due to quick changes in network characteristics. In addi-
tion, other implementations of placement restrictions might represent other place-
ment constraints, e.g., some nodes might be excluded due to privacy concerns. In
such cases, the optimal solution might not be applicable in practice at all. In this
section, we analyze the optimality gap of our implementation, i.e., we quantify the
increase of the cost function for our approaches compared to solving the problem
optimally.

In Figure 8.7, we plot this optimality gap. The maximum average increase we
can observe is only slightly above 20 % but, in general, it is much lower on average
(usually below 5 %). The highest increase is observed whenever pinning is involved
since it does not consider the link cost that it might imply for the operators placed
later on. The cost difference is the lowest for the colocation heuristic alone because
we have more nodes than operators to choose from. Therefore, even though we en-
force the colocation of operators, we can find a node that has a combined placement
cost close to the optimum. Restriction alone and restriction combined with coloca-
tion perform only slightly worse. This is because compared to colocation alone, not
all nodes are considered for the placement.

148 Chapter 8. Operator Placement

(a) Underlay 1

(b) Underlay 2

(c) Underlay 3

FIGURE 8.7: EVALUATION RESULTS ON THE OPTIMALITY GAP†

8.6. Evaluation 149

8.6.4 Discussion

8.6.4.a Time-cost tradeoff

Based on the results obtained, we now discuss the tradeoff between the saving in
resolution time and the cost overhead of our heuristics.

Figure 8.8 depicts this tradeoff with the resolution time on the x-axis and the
cost overhead on the y-axis. Each dot represents one result for the different graph
sizes. The size of each dot represents the size of the underlay network. Since the
colocation heuristic alone often increases the resolution time, sometimes dramat-
ically and therefore does not offer a good tradeoff, we omit it in the plot. From
the figure, we can first observe the scalability of our approach since there is a trend
towards a bigger saving in resolution time for larger underlay sizes. Second, we can
see the tradeoff between the cost optimality gap and saving in time. For instance,
COMB-1 leads to good results in terms of time saving but also has one of the high-
est optimality gaps and a large variance in the optimality gap. Applying restriction
alone consistently leads to low cost, however, there is more variance in the saving
in resolution time. If we apply restriction and colocation (COMB-3), the results are
similar, but for larger underlay sizes, we can see a slight benefit using COMB-3. The
similarity of these two is an interesting observation, as we imagine this to be highly
dependent on the actual implementation of the colocation heuristic and we plan to
examine this in future work. Compared to these, pinning and COMB-2 were found
to be the weakest in terms of the tradeoff.

FIGURE 8.8: TIME-COST TRADEOFF FOR THE HEURISTICS†

8.6.4.b Comparison with greedy cloud placement

We also compare our results with a greedy algorithm for operator placement. This
algorithm places every operator on cloud nodes only and chooses the cloud node
with the lowest placement cost for each operator. This is the current practice one
would employ to place cloud services without considering the edge or fog as pos-
sible tiers for carrying out processing. We plot the results of this greedy placement
strategy for the largest underlay network (Underlay 3) in Figure 8.9.

We observe that while the saving in resolution time is comparable to our heuris-
tics (with a maximum saving of around 90 %), the greedy algorithm performs much
worse in terms of cost. For larger graph sizes, the costs are three to four times higher
than the optimal solution. This is mainly because for the greedy solution, link costs

150 Chapter 8. Operator Placement

are substantially higher since all data has to be transferred to the cloud, even for
operator graphs where data sources and sinks all reside in the edge tier. Compared
to that, when applying our heuristics, we saw a maximum increase in the total costs
of way below 10 % on average.

FIGURE 8.9: PERFORMANCE AND OPTIMALITY GAP FOR GREEDY CLOUD PLACEMENTS†

8.6.4.c Dissecting the placement decisions

FIGURE 8.10: PLACEMENT LOCATIONS†

Figure 8.10 shows how the implemented heuristics influence the placement de-
cisions with respect to the different tiers, i.e., how many operators are placed on the
cloud, fog, or edge tier. Recall that for two heuristics—restriction and pinning—a
subset of placement decisions will be constrained to a certain tier. The plot serves to
illustrates both the differences in how the heuristics function in terms of restricting
placement decisions, and how the heuristics affect the non-constrained placements
as computed by the solver. We plot the number of operators on different tiers for
the largest problem instance (Underlay 3, gs11, see Table 8.4 and Table 8.2 for
details).

From the results, we can make the following observations: compared to the
optimal solution, pinning is more aggressive in terms of placing operators on the

8.7. Conclusion and Outlook 151

edge, i.e., close to where most of our data sources are located. Since restriction
always allows the placement on fog nodes (regardless of the location of data sources
and sinks), we can clearly see a trend towards fog placement when applying the
restriction heuristic either alone or in combination (COMB-1 and COMB-3). In
the case of COMB-3, we see nearly the same outcome as with restriction alone.
When combining pinning and restriction (COMB-1), we get the highest number of
cloud placements. If colocation is applied alone this leads to nearly the same results
as the optimal solution. Recall, however, that this increases the resolution time
in most cases. With applying colocation after pinning (COMB-1), we see a slight
shift towards cloud placements since after pinning, we might have fewer placement
possibilities—especially on the fog tier.

8.7 Conclusion and Outlook

This chapter studied the problem of placing operators (i.e., functional part of appli-
cations) in a 3-tier in-network topology, consisting of edge, fog, and cloud nodes.
We modeled the in-network operator placement (INOP) problem as an ILP model.
To reduce the solving time of this computationally hard problem, we presented an
approach that modifies the original problem by introducing constraints to the ILP
model. First, we introduced three general classes of heuristics to generate such
constraints. Then, for each of these classes, we implemented sample representa-
tives to demonstrate their feasibility. By evaluating our approach, we were able to
considerably decrease the solving while only introducing a small optimality gap.

Our findings can be applied to a variety of practical problems in the emerg-
ing domain of Edge Computing, one of which is the placement of microservices.
Hence, this approach can be integrated in the placement decision logic of an Edge
Computing framework as presented in Chapter 7.

We envision the following research directions for future work:

OTHER VARIANTS OF HEURISTICS | For each of the proposed heuristics, we imple-
mented one sample representative. Future work should explore other vari-
ants, e.g., by extending the pinning heuristic to more operators, or defining
other metrics for the colocation score.

MORE GENERAL GRAPH TOPOLOGIES |We assumed directed, acyclic graphs in which
data sources and sinks were pinned to the underlay network. This follows the
model currently found in distributed complex event processing and stream
processing applications. Future work should extend this model to more gen-
eral graph topologies, e.g., such that cycles are allowed. In addition, an ex-
tended model should include dynamic re-assignments of source-sink map-
pings between the underlay network and operator graphs, therefore allowing
for a better representation of applications with mobile data source and sinks.

REDUCING THE COMPUTATIONAL COMPLEXITY | Our method was able to consider-
ably reduce the solving time for the INOP problem. However, from the point
of view of computational complexity, it remains a hard problem. Future work
should examine heuristics that can reduce the general computational com-
plexity of the INOP problem.

CHAPTER 9

Context-Aware Micro-Storage1

Chapter Outline
9.1 Introduction . 153

9.2 Background and Related Work 156

9.3 Context-Aware Storage at the Edge 158

9.4 System Design and Implementation 161

9.5 Experience Report . 169

9.6 Conclusion and Future Work 173

9.1 Introduction

The previous chapter investigated the placement of functional parts of applica-
tions (termed operators). In this chapter, we extend this placement problem to
data, i.e., the problem of where information gathered by users at the edge should
be stored. Similar to the placement of application components, today most data
gathered by end devices is stored in Cloud Computing infrastructures, partly be-
cause of the devices’ limited capacity [ASH15]. This data flow—from the edge to a
cloud location—is opposite to the trend of implementing content delivery networks
(CDNs) throughout the Internet. While CDNs aim at providing cache servers for
the delivery of content originating from the cloud [Dil+02; VP03], we investigate
the opposite data flow from the edge to the cloud. This has been referred to as a
Reverse CDN [Sch+17; MSM17]. An example of devices that capture data at the
edge are mobile phones. Mobile phones nowadays feature a variety of different
applications. Data captured by or sent to those applications is usually stored on

1Large parts of this chapter are verbatim copies from [Ged+18b]. Those text segments are printed in
gray color. Tables and figures taken or adapted from this publication are marked with † in their caption.
The work was awarded Best Paper at the 2018 MobiCASE conference.

153

154 Chapter 9. Context-Aware Micro-Storage

distant servers, i.e., in Cloud Computing infrastructures. In any case, the storage
location is inflexible because it is predefined by the application or cloud infrastruc-
ture provider. Furthermore, we see a plethora of different applications that serve
the same or similar purpose (e.g., Dropbox, Google Drive, and OneDrive for cloud-
based data storage). Although users sometimes use different services to store the
same data, the different applications remain isolated from one another and there-
fore hinder the sharing of data across them. Besides using various applications for
the same purpose, the way mobile data is stored and accessed today is completely
decoupled from how the data is actually used and what the current usage contexts
of users and their intentions are. One example is that users often share content with
others at public events, where networks tend to be overloaded. As we will illustrate
later, this sharing often happens between users who are present at the same event.

As a result, we are faced with congested networks and high latencies when
retrieving data stored at distant locations. Retrieving locally relevant data from
distant Cloud Computing infrastructures furthermore incurs big stress on network
bandwidth—one of the main motivations for Edge Computing (see Section 3.1). In
summary, we can derive the following drawbacks and limitations from the current
state of the art:

DRAWBACK I: HIGH RETRIEVAL LATENCIES | For data such as video, this has a di-
rect impact on the perceived quality of service and therefore is undesirable.
In addition, for many mission-critical applications such as virtual reality or
assisted driving, the latencies to cloud infrastructures are prohibitive.

DRAWBACK II: HIGH CORE NETWORK BANDWIDTH UTILIZATION | Despite often being
retrieved only in a locally restricted area, all data is first sent to the cloud,
thus creating high bandwidth utilization and possible bottlenecks in the core
network. This is going to worsen as more large-volume data, such as video,
will be generated in the future.

DRAWBACK III: TIGHT COUPLING AND CUMBERSOME SHARING | Applications use pre-
defined storage locations, unable to consider where the data will be retrieved.
Furthermore, no unified interface is provided for sharing data across different
applications and users. While approaches to overcome this drawback could
be realized in cloud infrastructures, a novel approach to proximate edge com-
puting creates the opportunity for offering a unified solution that addresses
this drawback.

The emergence of Edge Computing provides an opportunity to overcome these
drawbacks, by not only providing computing, but also storage capabilities. Unnec-
essary transfers to the cloud and congestions in transit networks can be avoided if
data is stored close to where it actually is retrieved. However, as of today, the ques-
tions of how and where to provide storage capabilities for mobile devices at the
edge has not been addressed. This chapter closes this gap by presenting a concept
termed vStore (virtual store).

Overview of concept. vStore is designed as a middleware that abstracts from
concrete storage locations and—based on the current usage context and intentions
of the user—chooses the most suitable storage location. The decision where to
store data is made based on rules that can either be pushed globally to the frame-
work or created individually by users. From a networking point of view, vStore

9.1. Introduction 155

reduces the bandwidth utilization in the core network and the latency when re-
trieving nearby copies of requested data. From the user perspective, vStore provides
context-awareness and facilitates the sharing and reuse of data across locations and
applications. Furthermore, by pushing updated storage rules to the client devices,
vStore enables network operators and businesses to provide better quality of expe-
rience for their customers by providing proximate cloudlet storage and reacting to
changes in the network utilization. When making storage decisions, vStore takes
the following into account:

• Type of data, such as photo, video, contacts, etc.

• Usage context as provided by the client. This can include information like
time, location, ambient noise level, and network conditions.

• User intention, such as private use or sharing of data.

• Available storage locations and their properties (e.g. their location in the
network).

Instead of solely relying on either local (i.e., on the mobile device itself) or cloud-
based storage, we also consider storage locations in the access network or located
at the user’s wireless gateways. As we have shown in Chapter 5, upgrading such
gateways can provide a city-wide coverage of cloudlets. In vStore, we consider
the heterogeneity of those cloudlet nodes in order to optimize the placement de-
cision. To this end, we implement our framework for Android devices and deploy
storage nodes in a city to demonstrate the feasibility and key functionalities of our
approach. To the best of our knowledge, this is the first framework that provides
the functionality to abstract storage locations and enables storage decisions based
on rules that take into account the current context of the user and heterogeneous
edge infrastructures.

Summary of contributions. In summary, this chapter makes the following con-
tributions:

• We propose the concept of a middleware that decouples applications from
storage infrastructure, motivated by a user study and network measurements
(Section 9.3).

• We design and implement vStore, a framework that integrates this concept
and supports context-aware micro storage on heterogeneous cloudlets (Sec-
tion 9.4). The framework makes storage decisions based on contextual in-
formation from the client device and a set of rules that can either be defined
globally or customized by the client.

• We conduct a field study in which participants used a demo application for
mobile storage. Section 9.5 reports on the insights from this study. The results
show that context-based rules are able to reduce the amount of data stored in
the cloud. From the obtained insights, we derive future work in Section 9.6.

156 Chapter 9. Context-Aware Micro-Storage

9.2 Background and Related Work

9.2.1 Context-Awareness

We aim to build a framework that makes storage decisions based on rules that take
into account the current context of the user. Context is any information that char-
acterizes a current situation [Dey01] and according to Abowd [Abo+99], a system
is context-aware if it uses context to provide relevant information and/or services
to its users. In our system, contextual information should influence the storage
decision. Examples of relevant context include from where the user retrieves the
content, where one is located, or what the network conditions are alike. In general,
we can distinguish between low-level context (i.e., raw and unprocessed sensor
data) and high-level context that is inferred from (often multiple) low-level context
information.

Capturing contextual information on mobile devices. As mobile devices today
feature a multitude of built-in sensors, they are able to capture diverse contextual
information. The most prominent contextual information is the location. However,
it is easy to see how we can extend this to more sophisticated context. Especially
fusing data from hard sensors (e.g., a GPS receiver or microphone) with data from
soft sensors (e.g., one’s calendar entries) can generate meaningful higher-level con-
text. As an example, assume a user is located at a certain geo-coordinate. Adding a
list of point-of-interests, we might derive that he or she is at a sports stadium. Fur-
ther addition of microphone readings then might derive whether a sporting event
is currently in progress. We will later describe how vStore uses this kind of context
information to make storage decisions.

Usage of contextual information for data placement. Contextual information
can be leveraged for making data placement decisions. This is commonly done in
CDNs. Besides economic considerations [CZZ13], CDNs typically consider proper-
ties of the network (e.g., the topology or link quality) to make placement decisions
[Sal+18; Bas+03]. As user-centric context, CDNs consider the location distribution
of requests [Sce+11] in order to minimize access delays and bandwidth costs. The
same holds true for recent approaches that aim at providing storage infrastructure
at the edge. As an example, DataFog [GXR18] and FogStore [GR18; May+17] both
perform replication based on spatial locality of data requests.

9.2.2 Mobile Storage

Augmenting (mobile) devices’ storage capabilities has mostly been done through
Cloud Computing. Research in this direction has for instance proposed specialized
file systems that are optimized for the wireless characteristics of device-to-cloud
transfers [Don+11]. Following this idea, application-level file systems that con-
sider Edge Computing infrastructure have been developed [Sco+19] but they do
not allow fine-grained placement decisions for data based on contextual properties.
Tang et al. [Tan+15] suggest uploading data to multiple storage services. However,
they only consider cloud storage services. Psaras et al. [Psa+18] suggest buffering
data at WiFi access points prior to cloud synchronization.

9.2. Background and Related Work 157

Complementing cloud storage. Some previous works have proposed to comple-
ment cloud storage with an additional layer at the edge of the network. The decision
where to store the data is often based on location alone [SMT10], or data is syn-
chronized with cloud storage infrastructures [HL16; Psa+18]. Other than location,
network information, and usage patterns of files have been taken into account to
make storage decisions [Baz+13; Han+17]. In our work, we do not limit ourselves
to these but provide a general concept that operates on rules, which can incorpo-
rate whatever contextual information can be gathered by the devices. The Databox
project [Per+17b; Cha+15; Mor+16] proposes a privacy-preserving intermediate
layer between the user’s data and the cloud that acts as a mediator to control the
usage of the data.

Caching. Several approaches have been proposed for caching data, either in
a hierarchical way [Dur+15] or collaboratively determined by content popular-
ity [CP15]. Other works combine caching with prefetching strategies based on
predicted mobility [Zha+15a] or for specific applications, e.g., video streaming
[Tra+17]. By definition, caching is non-persistent and in our approach, we need
higher retention times of the data (e.g., to enable sharing). Hao et al. [Hao+17]
present EdgeCourier, a system that uses edge devices to synchronize documents.
The authors demonstrate the bandwidth saving but such a use case disregards the
aspect of sharing data between multiple users. Breitbach et al. [Bre+19] have
investigated the joint placement of data and computations in Edge Computing en-
vironments. While our approach focuses on data captured by users, they target IoT
applications that require large amounts of data as inputs. The authors propose an
approach to decouple the placement of such data from the actual tasks, optimizing
the tradeoff between execution time and data management overhead.

Peer-to-peer approaches. Using peer-to-peer approaches for storage has been
proposed in [MRS19; Yan+10; CLP17]. Pure ad-hoc approaches as presented in
[Pan+13b] are not feasible in practice, as our client devices are assumed to be highly
mobile and, thus, cannot guarantee spatial locality of the data. Furthermore, if we
assume cellular connections, they typically have a low uplink bandwidth, making
the retrieval of data slow for other peers. Yang et al. [Yan+10] assume that the data
originates from the cloud and is replicated at cloudlets at the edge. This is opposite
to the data flow of a reverse CDN as we assume it to be the case in our use cases.
Confais, Lebre and Parrein [CLP17] extend the design of the IPFS protocol [Ben14]
to support edge and fog nodes. Monga et al. [MRS19] present a federated store
for streams of data blocks that emphasizes on reliability. None of these approaches
however enable the same flexible context-aware placement as our rule-based ap-
proach.

Replication. Some works have investigated replication strategies that are built
on top of heavyweight distributed data storage systems (Apache Cassandra) [GR18;
May+17; GXR18], making the practical deployment on constrained edge nodes
questionable. When replicating data, issues w.r.t. consistency can arise [Mor+18c;
Mor+18d]. This is beyond the scope of our concept system, and we assume all
stored data to be immutable.

158 Chapter 9. Context-Aware Micro-Storage

Summary. While offloading computations closer to the edge of the network has
been studied extensively, the possibility to extend data storage towards the edge
has seldom been examined. Existing works mostly use cloudlets at the edge as
a buffer for cloud synchronization or as a cache for data originating either from
the cloud or from IoT devices. Most importantly, except for a few approaches that
consider the location of users and data, the storage decision is agnostic to contextual
properties, and does not support sharing of data. In contrast, we propose a concept
for a sharing-enabled, context-aware edge storage for data that is captured with
personal mobile devices.

9.3 Context-Aware Storage at the Edge

We propose a novel approach to provide context-aware micro-storage to mobile
users as opposed to using inflexible cloud storage locations that do not take into
account the user’s context for placement decisions. Figure 9.1 contrasts these two
approaches, with Figure 9.1(a) showing the traditional approach, where all data is
stored in homogeneous cloud environments. The storage location is determined by
the individual application. In contrast to that, we propose vStore as a middleware
to abstract from predefined storage locations (Figure 9.1(b)). Requests to store
and retrieve data from the client are handled by the middleware. Hence, vStore
enables decoupling between the individual applications and the location where the
application’s data is stored. Instead of solely relying on cloud infrastructures, the
middleware supports different types of storage nodes.

(a) Traditional application-
specific cloud storage

App AppApp

vStore

C
ontextual inform

ation

(b) Our proposed concept

FIGURE 9.1: COMPARISON OF STORAGE APPROACHES†

9.3.1 Motivation and Use Cases

To further justify the need for vStore, we describe three use cases that benefit from
our approach. These use cases are grounded in a survey we conducted. In total, the

9.3. Context-Aware Storage at the Edge 159

survey had 51 participants. The participants were aged 16–40 and mostly students
and researchers. This survey helped to (i) understand current usage patterns and
challenges encountered by mobile users w.r.t. data storage and retrieval and (ii)
derive requirements for our storage framework. In the following, we highlight es-
sential insights about how people capture, use, and share data generated with their
phones. All survey questions can be found in Appendix H. Throughout this section,
questions are referenced by their number as listed in the appendix (e.g., Q1).

9.3.1.a Sharing data at an event

Especially during large-scale events, cellular networks are often congested [Frö+16].
A prominent example are football matches. Figure 9.2 shows measurements of the
available cellular bandwidth during a match at the Commerzbank Arena, a sta-
dium in Frankfurt (Germany) with a capacity of 51 500 spectators. We measured
the available bandwidth to a cloud location using the iperf2 tool. Compared to
the average bandwidth available in the stadium when no match takes place, we
can clearly see that the network quality decreases tremendously. At some distinct
events, such as goals occurring in the match, the network collapses almost en-
tirely. At half-time, the network became entirely unavailable. In such cases, edge
cloudlets (that for instance are deployed on several WiFi access points) can be use-
ful to provide users with storage services. Besides the obvious use case of storing
data in the cloud for later use or sharing with people not present at the event, a
more interesting use case for edge storage arises when data is to be shared among
people present at the very same event. This type of sharing has been examined
before in the context of video streaming [Dez+12] but not with the support of Edge
Computing infrastructure.

In our survey, over 50 percent of the participants stated that they at least oc-
casionally share data such as pictures at an event (Q17). About 20 percent of the
time, sharing is done with other people attending the same event (Q20). Only 4
percent of our participants have never experienced congested connections during
events (Q18).

FIGURE 9.2: MEASURED CELLULAR BANDWIDTH DURING A FOOTBALL MATCH†

2https://iperf.fr/ (accessed: 2020-03-09)

160 Chapter 9. Context-Aware Micro-Storage

9.3.1.b Context-aware storage across applications

In our survey, we questioned participants whether the storage services they choose
to use depend on (i) whether the data is intended for private or public use, (ii) their
current location, and (iii) the date and time of data capture. The results of those
questions are depicted in Figure 9.3(a). We can clearly observe that the major-
ity of users base the decision on where to store their data to a great extent on
these three contextual properties. Following this result, these contextual proper-
ties, among others, will be used by our framework to make storage decisions. Fur-
thermore, some users upload the same data to more than one storage service (see
Figure 9.3(b)). With regards to this result, vStore offers the opportunity to provide
a unified interface through which users access different storage services.

Public/private

Current location

Time

0,0 % 25,0 % 75,0 % 100,0 %

11,8 %

9,8 %

3,9 %

33,3 %

21,6 %

5,9 %

7,8 %

17,6 %

25,5 %

43,1 %

49,0 %

51,0 %

3,9 %

2,0 %

13,7 %

Strongly Agree Agree Undecided Disagree Strongly Disagree

50,0 %

 of participants

(a) Usage of storage services depending on contextual properties

0,0 % 25,0 % 75,0 % 100,0 %

Very frequently Frequently Occasionally Rarely Very rarely Never

50,0 %

 of participants

2,0% 7,8% 23,5% 25,5% 25,5% 15,7%

(b) Upload of the same data to multiple storage services

FIGURE 9.3: SURVEY RESULTS ABOUT THE CONTEXT-DEPENDENCE OF CHOOSING STOR-
AGE SERVICES AND USING MULTIPLE STORAGE SERVICES†

9.3.1.c Getting suggestions for data related to one’s current context

When at a certain location or when performing a certain activity, users often search
for information related to that specific context. With the capability to query our
framework for data that is similar to one’s usage context, we can provide users with
this kind of information. Coming back to the example of an event, over 78 percent
of our surveyed participants at least sometimes retrieve data related to an event
they attend (Q19). Furthermore, retrieving context-aware information is a crucial
building block for augmented reality applications, as shown in [Mül+17].

9.3.2 Problem Definition and Requirements

From the use cases described above, we define the problem we want to tackle as
follows: given data that is captured by mobile users and contextual information,
determine a location where the data should be stored. Besides the device itself and
cloud storage, various storage locations at the edge should be considered. Storage

9.4. System Design and Implementation 161

locations should best reflect the future retrieval patterns (e.g., where and when)
of the data. Furthermore, the decision should also consider whether the data is
intended for private use or sharing.

In order to provide context-aware micro-storage as we envisioned, the system
should fulfill the following requirements: (i) storage location agnosticism, (ii) open-
ness to extensions (e.g., allowing to incorporate more contextual properties) and
third-party applications, and (iii) extensibility to implement new rules for storage
decisions. In the next section, we will describe the design of a system that realizes
our concept and outline how it fulfills these requirements.

9.4 System Design and Implementation

In this section, we describe the design of our system and its individual components.
Figure 9.4 shows a high-level overview of our system. Our proposed concept is
composed of several building blocks: (i) the vStore framework that provides inter-
faces to applications and storage nodes, and makes storage decisions, (ii) individual
storage nodes on which data can be stored, and (iii) a master node that maintains
a global view on the storage locations of data items. In addition, context providers
provide contextual information for the storage decisions and an external configura-
tion file defines basic settings for the operation of the framework. In the following
subsections, we will explain those building blocks in more detail, and present a
demo application that makes use of vStore on Android phones.

vStore
Framework

Context
Aggregator DB Helper

Uploader

Context
Provider

.store() .get()

Application

Matching Engine

Configuration File

Node Manager

Downloader

Master
Node

Storage
Node

Storage
Node

Config
DownloaderRules

……
Storage

Node

FIGURE 9.4: SYSTEM ARCHITECTURE†

162 Chapter 9. Context-Aware Micro-Storage

9.4.1 vStore Framework

The central contribution of this chapter is the concept of vStore, a framework that
provides interfaces to applications in order to store and retrieve data while ab-
stracting from a concrete storage location. The framework collects current contex-
tual information, maintains a list of available storage nodes and—based on a set of
rules—makes the decision where to store the data. For each data item to be stored,
a unique identifier is generated that is later used to retrieve specific data across
storage nodes. The framework is implemented as a Java Library for the Android
operating system. Figure I.1 in Appendix I shows the complete class diagram of the
implementation.

9.4.1.a Context aggregator and context provider

The task of the context aggregator is to collect the different kinds of contextual
information. It supports different types of contexts that can be supplied by context
providers. As a general way to supply contextual information, context providers
can use a key-value representation of the data in a JSON file. This is a common
way to represent contextual information in the IoT domain [Per+14a]. Context
providers can push contextual information to the context aggregator via a message
bus. Alternatively, through an API that must be provided by the context provider, the
context aggregator can pull the currently available contextual information from the
provider. Besides this general interface, the context aggregator has built-in support
for various contextual information provided by the APIs of the Android operating
system. In Figure 9.5, the architecture of the aggregator is summarized.

To gather contextual information from the mobile phones, we rely on three
providers of such information: First, we make use of AWARE3, an open source
framework for context instrumentation on Android phones. Second, the Google
Places API provides a list of places that surround the user, their type, and the like-
lihood of the users being located at those places. Third, the Android Connectivity
API provides information about the network connectivity of the device. In the fol-
lowing, we list the different types of context supported by the context aggregator
and how they are acquired in our implementation:

LOCATION | A plugin for AWARE provides location information using the Google
Fused Location API4.

PLACES | Whenever a new location is available, we query Google’s Places API5 for
an updated list of places. We group the large number of place types provided
by this API into three groups, namely points of interest (POI), events (such as
stadiums, city halls, and night clubs) and social places (such as restaurants,
cafes, and bars).

NOISE | The ambient noise level is measured by an AWARE plugin through the
phone’s microphone. By configuring a threshold, we can determine if the
current environment should be considered as loud or silent.

3https://www.awareframework.com (accessed: 2020-03-27)
4https://developers.google.com/location-context/fused-location-provider (accessed: 2020-03-21)
5https://developers.google.com/places/web-service/intro (accessed: 2020-03-21)

9.4. System Design and Implementation 163

ACTIVITY | The user activity is provided by another plugin that internally uses the
Google Awareness API to identify the user’s current activity (e.g., idle, driving,
or walking).

NETWORK | We use Android’s ConnectivityManager and TelephonyManager to fetch
details about the user’s current connectivity state (e.g. to what kind of net-
work the user is currently connected to).

DATE AND TIME | The time and date as reported by the phone’s operating system.

Context Aggregator

Activity

Environment Noise

Location

Places Service

Broadcast
(push)

Content Resolver
(pull)

Network

Connectivity Manager
Telephony Manager

Context
Provider

FIGURE 9.5: CONTEXT AGGREGATOR†

9.4.1.b Node manager

As outlined at the beginning of this section, the core of our concept is to make a
sensible placement decision for data, given different available storage nodes. The
node manager maintains a list of all available storage nodes. When storage nodes
are added to the framework, their type, location and bandwidth need to be speci-
fied. Available nodes can then be queried according to these properties. Before a
node is stored in the internal database of vStore, the node manager checks if the
node is reachable. Node information can be updated and deleted through an API.

9.4.1.c Rules

In our framework, rules are used to make the storage decision and are evaluated by
the matching engine, as described in Section 9.4.1.d. Rules can either be defined
globally by a configuration file that is remotely pulled (see Section 9.4.4) or created
individually by users. In detail, our rules consist of three parts that will be evaluated
in the following order during the matching:

(i) METADATA PROPERTIES | These denote for which MIME type and file size the
rule should be applied during the matching process.

(ii) CONTEXT FILTERS | Context filters determine which contextual properties must
be fulfilled for the rule to be applied. Any of the aforementioned contextual
information can be specified here. Depending on the type of context, different
filter operations can be used. For example, using the places context, we can
define a binary filter that checks if a user is at a certain location. A contrasting
example is the date and time, or noise levels, where we can specify a certain
range or threshold value.

164 Chapter 9. Context-Aware Micro-Storage

(iii) STORAGE DECISION LAYERS | The decision layers determine which storage
nodes are chosen. Rules can include many of those layers, ordered by pri-
ority. Each layer defines constraints on the storage node, such as available
bandwidth or distance to the user. A decision layer can also point to one spe-
cific storage node. In this case, the file will be stored on that specified node.
Optionally, and for future work on replication, we also include the definition
of a minimum number of replicas.

The way we define rules follows the Event Condition Action (ECA) paradigm. We
chose to follow the ECA principles for the design of our rules because ECA rules are
a common structure in the domain of active databases [PD99; HS02]. Mapped to
our implementation, an event represents the storage request of a file. Conditions
are the contextual filters of the rule that have to be fulfilled, and the action is the
selection of storage nodes by the decision layers.

9.4.1.d Matching engine

The matching engine is the main part of the framework. Given a file f , the current
context C , and a set of available storage nodes N and rules R, it decides on which
storage node the file will be saved. Hence, this storage decision function can be
formalized as:

(f × C × N × R)→ N

The matching process consists of four main steps. The pseudocode is shown in
Algorithm 2. As a first step, only rules that match file metadata (type and size) are
considered (line 1). For instance, a rule that only applied to image files would not
be evaluated further if the data the user wants to store is a document. The same
applies if a rule specifies that it should only be applied to files of a certain size. Next,
all contextual filters as defined by the rule have to match the context that is given at
the time of evaluating the rule. Only those rules are triggered and evaluated further
(lines 2–6).

In the third step of the matching process, for each of the remaining rules that
satisfy the metadata and context filters, a detail score s ∈ �, 0 ≤ s ≤ 1 is computed
to determine the rule that most accurately describes the current context. Two fac-
tors influence this score: (i) how many contextual filters are defined in the rule, and
(ii) for continuous filters (i.e., that operate on a certain range) how narrow the filter
is. For instance, a rule that triggers within 150 meters of a point of interest would
be assigned a higher score than one triggering within 500 meters. For each con-
textual property, we define a maximum value to which the property can contribute
to the overall detail score. A higher value means that this contextual property is
considered to be more important. Table 9.1 shows the maximum detail score per
contextual property and whether it is discrete (i.e., a binary filter that describes
if a contextual property is present or not) or continuous (i.e., a range of possible
values). In the latter case, a function maps the size of the range to the maximum
allowed detail score. The total detail score is then given by the sum of all scores
per contextual property. According to this metric, the most detailed rule is cho-
sen to be executed (line 7). We chose these maximum detail scores such that they
emphasize use cases that require location context (including places) and the date
and time. For example, this allows to accurately represent use cases as described in
Section 9.3.1.a.

9.4. System Design and Implementation 165

Lastly, when a rule is selected, we iterate over the decision layers (lines 8–14)
and available storage nodes (lines 9–13). For each pair of decision layers and stor-
age nodes, traversed in order of the decision layers, we check if the rule’s constraints
w.r.t. bandwidth and distance match the node’s properties (line 10). If that is the
case, this node is chosen and returned as the storage location (line 11).

Algorithm 2 Storage matching
Input file, context, N, R
Output n ∈ N

1: rules ← getRulesMatchingMetadata (R, f.size, f.type)
2: for r ∈ rules do
3: if ∧c∈r.getContex tF il ters matchesContext?(c,context) then
4: triggeredRules.add(r)
5: end if
6: end for
7: selectedRule ← getRuleWithHighestDetailScore(triggeredRules)
8: for (dl ∈ selectedRule.getNextInDecisionLayer() do
9: for n ∈ N do

10: if dl.bandwidth.matches?(n.bandwidth) ∧
dl.distance.matches?(n.distance) then

11: return n
12: end if
13: end for
14: end for

TABLE 9.1: DETAIL SCORES PER CONTEXTUAL PROPERTY

Contextual property Max. detail score Mapping

Location 0.2 continuous

Places 0.15 continuous

Date and time 0.15 continuous

Sharing domain 0.1 discrete

Activity 0.1 discrete

Network 0.1 discrete

Noise 0.1 discrete

Figure 9.6 shows an example of a storage decision, in which a user takes a
picture at a point of interest. Rules that match the current context are triggered,
i.e., in this example, the user is idle and not in motion, connected to a 4G network,
and at a point of interest. In this example, the rule labeled Image Rule in the figure is
the one with the highest score, and in its decision layer, a cloudlet with a maximum
distance of 200 meters and at least 50 MBit/s of bandwidth is chosen to store the
picture.

166 Chapter 9. Context-Aware Micro-Storage

Latitude:
Longitude:

Place:
Activity:

Network:

48.8583701
2.2922926
POI
Still
4G

Context

Cloudlet
Distance: 200m

Bandwidth: 50MBit/s

Cloudlet
Distance: 5km

Bandwidth: 25MBit/s

4G eNodeB
vStore

Framework

…
Image Rule

vStore
amework

…
mage Rule

FIGURE 9.6: EXAMPLE OF RULE MATCHING† FIGURE 9.7: STORAGE NODE HIERARCHY†

9.4.2 Storage Nodes

Storage nodes are the devices that are available to store the data. In a real-world
deployment, a storage node could be hosted on a variety of devices, either close-
by or distant to the user. To take into account this heterogeneity, vStore defines
different types of storage nodes as depicted in Figure 9.7. Besides cloud nodes, we
consider cloudlets, gateway nodes, and nodes in the core network. Gateway nodes
are devices to which users have a direct wireless connection, such as WiFi access
points or cellular base stations. In addition, we also consider private clouds as a
type of storage nodes, i.e., deployments that are owned by end users themselves.
One example of such a system is ownCloud6. Including this kind of nodes is sensible
for the definition of storage rules aimed at the storage of private data, i.e., data that
is not shared among different users of the framework.

Storage nodes are registered to the global configuration file (see Section 9.4.4)
and master node (see Section 9.4.3) with their available bandwidth and location.
For our prototype implementation, we use the geographic locations of the nodes,
assuming that physical proximity correlates with network latency. We note that for
future work, network coordinates (such as Vivaldi coordinates [Dab+04]) could
give a more realistic estimation of the quality of the connection to the storage nodes.

9.4.3 Master Node

When a file is saved through the framework, a global identifier (using an UUID)
is generated. This UUID acts as an identifier when requesting a previously stored
file. The clients that originally uploaded the file to the framework keep a record
of the nodes their file was stored on. In addition, for each storage decision, the
master node keeps a record that contains the mapping of the UUID to the storage
node(s) on which the file is stored. This is required for two reasons: (i) in the
case of sharing the file, other clients do not know the storage location a priori, and
(ii) in the case of replication and failure of one storage node, clients need a list of
all storage nodes that have copies of the file. Recall that the implementation of our
concept does not consider mutable data and therefore, common challenges found in
distributed file systems, such as providing consistency guarantees, are beyond the
scope of our contribution. Existing works like the Google File System [GGL03] have
developed mechanisms where a master node interacts with several storage nodes

6https://owncloud.org (accessed: 2020-03-27)

9.4. System Design and Implementation 167

and provides fault tolerance and consistency guarantees. We leave the integration
of such concepts into our approach for future work.

9.4.4 Configuration

The framework can be configured externally. This mainly serves two purposes:
(i) initially retrieving available storage nodes, and (ii) including global rules for the
placement decision. Defining global rules that are available on all devices is impor-
tant for users who do not wish to specify custom rules. This ensures that at least
some basic storage decisions can be made. Furthermore, this could allow service
providers to update rules, e.g., in order to react to changes in network conditions
or node availability.

To this end, for simplicity reasons, the framework uses a central configuration
file that can be pulled from a cloud location. This provides a mechanism for re-
trieving and updating available storage nodes and rules. In the future, we envision
the configuration of the framework to be managed in a distributed way and to be
pushed to the devices whenever new information is available. This would for in-
stance enable users who have the same or similar context to share custom rules they
have defined.

9.4.5 Demo Application

To conduct our field study (see Section 9.5) we developed an application for the
Android platform that uses our framework. This application provides users the pos-
sibility to store, view, and retrieve files; similar to applications for cloud storage.
The functionality allows to represent use cases as described in Section 9.3.1. In de-
tail, the application allows users to (i) store their data on a storage node determined
by the matching engine of the framework (enabling context-awareness as required
for use cases like the one described in Section 9.3.1.a), (ii) define whether this data
should be accessible publicly or not (allowing sharing of data, see Section 9.3.1.b),
(iii) view and create custom storage rules, and (iv) retrieve context-related data
from other users (see Section 9.3.1.c). Information about locally stored files, avail-
able storage rules, and nodes is stored in an SQLite database7. The database scheme
is shown in Figure I.2 of Appendix I.

Figure 9.8 depicts the main screens of the application. The application’s main
screen shows a summary of all current contextual information available (Figures
9.8(a) and 9.8(b)). The user’s files are shown in a grid-layout as seen in Fig-
ure 9.8(c). For files that are photos or videos, a thumbnail is shown to preview
the contents of the file. Tapping the file opens it in the default application for that
file type. On the same screen, users can also add new files, by tapping one of the two
pink buttons in the lower part of the screen. The left button (depicting a shield) is
used to add private files (i.e., files that cannot be retrieved by other users) while the
right one is used to add files that are to be shared. Besides their own files, users can
also retrieve files based on contextual queries (e.g., files that were captured nearby
or at similar places). Figure 9.8(d) shows an example of contextually similar files.
The pink icon in the lower right corner allows users to customize the context filters,
i.e., users can choose which contextual properties should be queried. Note that in
order to save bandwidth, initially, only thumbnails are downloaded. The entire file

7https://www.sqlite.org/index.html (accessed: 2020-03-27)

168 Chapter 9. Context-Aware Micro-Storage

(a) Contextual information (b) Contextual information (c) Own files

(d) Contextual files (e) List of rules (f) Custom rule creation

FIGURE 9.8: SCREENSHOTS OF THE DEMO APPLICATION†

is retrieved only when the users select the file to be viewed. The application further-
more provides a user-facing interface to the framework storage rules. Figure 9.8(e)
shows all currently active storage rules. Tapping on the pink icon in the lower right
corner opens up the interface shown in Figure 9.8(f) that allows the creation of
custom rules.

After having carried out a field trial using this app, users were asked to assess the
usability of the demo application using the System Usability Scale (SUS) [Bro96].
According to the results, the application has an average SUS of 76.68.

8The SUS ranges from 0 (worst) to 100 (best). According to [BKM09], our SUS of 76.6 ranks between
“good” and “excellent”.

9.5. Experience Report 169

9.5 Experience Report

In this section, we report on experiments we conducted using the demo application
we described in Section 9.4.5. We show the feasibility of our approach by deploy-
ing several storage nodes and conduct a field study by defining sample rules and
evaluating the resulting storage decisions that vStore made. The results of the field
study allow us to gain further insights on which contextual properties, and therefore
which kinds of rules, are relevant in practice.

9.5.1 Experimental Setup

Storage nodes. We deployed a total of six storage nodes in the area of Darm-
stadt, Germany. The maps shown in Figure 9.9 visualize our deployment. Fig-
ure 9.9(a) shows an overview of the area with the location of the storage nodes
and Figure 9.9(b) zooms in on the city center with a heatmap depicting where
most of the data was captured. For a rapid deployment, we used a RaspberryPi
(version 3, model B) to host the storage nodes and MongoDB as a database to store
the data. A NodeJS server implements the storage service and acts as an interface
between MongoDB and the vStore framework. To simulate different types of stor-
age nodes we would have in a large-scale deployment, we set different node types
in our system: two cloudlets, one gateway, one cloud node, one core net node, and
one private cloud.

(a) Overview (b) City center

FIGURE 9.9: NODE LOCATIONS AND USAGE HEATMAPS†

Rules. We defined several global rules that were pushed to the phones in our field
trial of vStore. The most relevant are listed in Table 9.2. Note that we omit the de-
tailed description of other rules that were active and mostly used to test certain
features (e.g., one rule triggered at an exact location placed the storage on the
phone only). The table shows the contextual properties that have to match accord-
ing to the rule, as well as the detail score of the rule. The bottom row furthermore
reports how often the rule was executed in our field trial.

The POI Photo Rule is executed when a user is near a point of interest and wants
to upload a photo. It is applied to files of any size and only for data that is to be
shared, reaching a detail score of 25 %. The decision layer first attempts to save

170 Chapter 9. Context-Aware Micro-Storage

the file on a gateway node within 5 km of the user’s location, otherwise, a cloudlet
within 20 km is used. The Social Photo Rule is executed at locations that are tagged
social according to the places API. This rule has the same contextual filters as the
previous POI photo rule and the same detail score. We define these two rules to
be able to evaluate them separately, according to the different place contexts. The
Driving Rule is applied when the context aggregator reports the user’s activity as
driving. This rule would also be triggered if a user is aboard a train or bus. Any file
uploaded in this context will not be stored on nearby cloudlets since the user might
only drive by a nearby POI without the intention of sharing or retrieving related
data. Therefore, we define this rule such that files will be stored in the cloud. The
Event Photo Rule combines two different contextual filters. First, a user has to be at
a place that is of the type event. Second, a certain noise level has to be captured.
We determined this value empirically by comparing readings of the AWARE noise
plugin with perceived ambient noise levels. The resulting threshold of 20 dB seems
to point towards calibration errors of the plugin, but this value seemed to represent
loud environments. The rule stores photos that are to be shared on a cloudlet within
a radius of 30 km. The Basic Cloud Rule is used as a fallback due to the low detail
score, should no other rule yield a result. It then checks if a core net node with a
bandwidth of 10 GBit/s is available to upload the data. If this is not the case, the
file will be stored in the cloud. To evaluate the storage of private files, we create
the Basic Private Rule. This rule stores all files that are not intended for sharing on
a private storage node.

Users. We distributed the demo application to six participants and configured the
framework with the aforementioned rules. The participants were asked to use the
application to capture various kinds of data (e.g., photos, videos, contacts) and
store them using the demo application described in Section 9.4.5.

9.5.2 Usage Patterns and Storage Decisions

We now look at how users used the application, i.e., which types of data they stored
and which storage decisions were made based on the rules we defined. The bottom
row of Table 9.2 shows how many times each rule was triggered. All our defined
rules were triggered during the user study. We can observe that the Basic Cloud Rule
was triggered the most, however, data was stored on cloud nodes only for 29.3 %
of all data. This is because the cloud rule has a very low detail score. In many
cases, other rules that relate to the user’s location or define proximity to a point of
interest, have a more detailed score and therefore those are the ones that determine
the placement. We can think of the cloud rule as a fallback, in case there is no most
likely place (e.g., when we are not sure where the user is).

The resulting placement decisions for the different file types that users captured
during our study are shown in Table 9.4. The results are listed per individual storage
node. In total, users stored 178 files using vStore, most of which were photos. Out
of those, 35.9 % were stored on cloudlets, 19.3 % on gateway nodes, and 2.7 %
on core net nodes. In contrast to this, without vStore, users would likely have all
their photos uploaded to distant cloud infrastructures. These numbers confirm the
benefits that can be obtained in future Edge Computing environments.

Table 9.3 lists the sharing ratio for each type of data, i.e., whether users marked
the data to be publicly shared on the storage nodes or for their private use. From
the results, we can observe that the sharing ratio heavily depends on the data type.

9.5. Experience Report 171

TABLE 9.2: PLACEMENT RULES†

PO
I

Ph
ot

o

So
ci

al
Ph

ot
o

D
ri

vi
n

g
R

u
le

Ev
en

t
Ph

ot
o

B
as

ic
C

lo
u

d

B
as

ic
Pr

iv
at

e

Context
Place: Place: Activity:

Place:

None None
POI Social Driving

Event,
Noise:
≥-20 dB

File
size

Any Any Any Any Any Any

File JPG, BMP, JPG, BMP,
Any

JPG, BMP,
Any Any

types PNG, GIF PNG, GIF PNG, GIF
Sharing
domain

Public Public Public Public Public Private

Days Mon–Sun Mon–Sun Mon–Sun Mon–Sun Mon–Sun Mon–Sun
Time Any Any Any Any Any Any

Decision

Layer 1 Layer 1

Layer 1
Layer 1

Layer 1
Layer 1

layers

Gateway Cloudlet

Cloud
Cloudlet

CoreNet
Private-≤ 5 km ≤ 5 km

≤ 30 km
↑ 10 GBits/s

nodeLayer 2 Layer 2 ↓ 10 GBits/s
Cloudlet Cloudlet Layer 2
≤ 10 km ≤ 10 km Cloud

Detail
score

0.25 0.25 0.2 0.35 0.1 0.1

Times
triggered

36 34 18 5 47 5

While users were willing to share over 80 percent of their images, for more sensitive
information such as contacts this number drops down close to 3 percent. With the
set of rules we defined, we are able to capture the user’s intention in this aspect, as
the sharing domain influences the placement decision vStore makes.

TABLE 9.3: TOTAL NUMBER AND SHARING RATIO OF DATA TYPES

Total number of files Sharing ratio

Image 145 81.46 %

Video 17 9.55 %

Document 11 6.18 %

Contact 5 2.81 %

9.5.3 Discussion

With our preliminary experiments outlined in this section, we were able to show
how we can couple the placement of data to the context of the user. To do so, we
used a rule-based matching that includes heterogeneous storage nodes at the edge.

172 Chapter 9. Context-Aware Micro-Storage

TABLE 9.4: PLACEMENT RESULTS BY LOCATION AND DATA TYPE

Type of Data

Image Video Document Contact Σ
St

or
ag

e
lo

ca
ti

on
Gateway 28 3 0 2 33

Cloudlet 1 35 6 1 0 42

Cloudlet 2 17 1 0 0 18

CoreNet 4 1 2 0 7

Cloud 43 3 7 3 56

Private Node 4 0 1 0 5

Phone 14 3 0 0 17

The results showed that our rules were able to capture usage contexts that led
to placement decisions closer to the edge, e.g, on cloudlets or gateway nodes. Fig-
ure 9.10 summarizes the number of times a file was saved on each type of storage
node in our field trial. From the figure, we can observe that—in line with the rela-
tionship between Cloud Computing and Edge Computing described in Chapter 2—
in practice, Edge Computing will complement Cloud Computing, as suggested by
the near equal number of cloud locations that were chosen compared to cloudlets.
In Table 9.4, we can observe that our storage rules were able to represent natu-
ral choices for data storage locations. As an example, for videos, cloudlets were the
most used storage destination, while for documents (data that has lower bandwidth
and latency requirements, and likely lower spatio-temporal access correlations) the
cloud was storage location most often used. Having appropriate storage rules and
accurate contextual information therefore allows to make these decisions automat-
ically.

FIGURE 9.10: NUMBER OF PLACEMENTS PER STORAGE NODE TYPE

However, the accuracy of contextual descriptions remains an issue. For instance,
files were sometimes saved using an incorrect context, due to the fact that the con-
text is not updated in real-time. Keeping an accurate context on a mobile phone

9.6. Conclusion and Future Work 173

remains a trade-off between accuracy and energy consumption. In addition, much
work still needs to be done in order to correctly recognize higher-level context.

Nevertheless, our user study exemplified the usage of cloudlets, especially if
they are located at the edge of the network and close-by to mobile users. This
is especially true in the context of sharing data locally. For this use case, vStore
offers the possibility to define rules that are triggered when a user is at a certain
location or point of interest. As outlined in Section 9.3.1.a, many people today
share data at events, some of them even with people present at the same event. Our
results further demonstrated a general high sharing ratio, irrespective of ongoing
events (see Table 9.3). For the future, we envision storage cloudlets to be deployed
throughout city areas, some of which will be co-located at the radio access network
or act as gateway nodes themselves (e.g., WiFi hotspots during events).

Of course, appropriate rules are required to make the framework beneficial in
practical use. We enable users to define custom rules for representing their usage
intentions. In addition to custom rules, the framework allows for global rules to
be configured. In our field trial, we could see that even with just a basic set of
global rules, these were often executed when making the placement decisions. In
future use of the system, infrastructure providers could set these global rules, e.g.,
to specify local cloudlets on gateway nodes when regular networks are overloaded.

9.6 Conclusion and Future Work

In this chapter, we have extended the placement problem in Edge Computing from
functional application parts to data that users capture with their mobile devices. We
have motivated the need for context-aware micro-storage for mobile users with a user
study and by measurements of available cellular network bandwidth during a large-
scale event. The user study gave valuable insights about usage patterns of mobile
users with regards to data storage. We then presented the concept of vStore (virtual
store), a framework that implements the building blocks for enabling micro-storage
at the edge of the network. Our concept (i) enables the decoupling of storage loca-
tion from predefined cloud locations, (ii) leverages small-scale cloudlets at the edge
of the network to provide proximate storage locations, (iii) uses various contextual
information to make the placement decision, and (iv) allows for cross-application
sharing of data. A set of global and local rules allows different stakeholders (e.g.,
end users or infrastructure providers) to define custom rules that are evaluated
when making the decision where to store the data. The concept of context-aware
storage decisions allow to better support various use cases, e.g., sharing data at
events through proximate storage cloudlets (see Section 9.3.1.a). As the number
of consumer devices that generate data increases, storing and retrieving data from
nearby cloudlets saves scarce core network bandwidth. The concept presented in
this chapter therefore is an important building block for Edge Computing in the
context of data-centric applications.

We conducted a field study of our system using an application for the Android
platform through which users could capture and upload data. Furthermore, users
were able to retrieve data related to their current usage context. We deployed
different storage nodes in a major city and through the implementation of example
decision rules we were able to show how this framework can complement existing
cloud-based storage infrastructures. Specifically, we showed we could reduce the
number of times that files were saved in the cloud. This could be achieved based

174 Chapter 9. Context-Aware Micro-Storage

on rules that contain context mappings (e.g., one’s location and sharing intention).
The framework presented here opens up a lot of opportunities for future work.

We make all components of the framework9,10,11 and the demo application12 pub-
licly available as open source to encourage future research. In particular, we suggest
investigating the following in future work:

REPLICATION | Our framework assumes a single location where the data will be
stored. However, in view of two aspects, it makes sense to include replication
strategies: (i) edge cloudlets are typically more unreliable compared to Cloud
Computing infrastructures, and (ii) user mobility requires data migration in
order to maintain the benefits of proximate retrieval.

CDN INTEGRATION | This chapter has explored the data flow of a reverse CDN, i.e.,
data flows from end devices that capture data towards storage locations. In
conjunction with replication, future work needs to include CDN functionality
in the framework, e.g., mechanisms for the end devices to efficiently retrieve
data.

AUTOMATIC RULE GENERATION | Rules in our framework are either created by the
end user or pushed globally to the devices. Creating sensible rules requires the
anticipation of future usage and request patterns (e.g., where and when data
will be requested). For future work, we envision automatic rule generation.
Especially techniques in the domain of machine learning could contribute to
this, e.g., by learning from a large body of usage patterns.

9https://github.com/Telecooperation/vstore-framework (accessed: 2020-02-12)
10https://github.com/Telecooperation/vstore-master (accessed: 2020-02-12)
11https://github.com/Telecooperation/vstore-node (accessed: 2020-02-12)
12https://github.com/Telecooperation/vstore-android-filebox (accessed: 2020-02-12)

CHAPTER 10

Microservice Adaptations

Chapter Outline
10.1 Introduction . 175

10.2 Background and Related Work 177

10.3 Adaptable Microservices for Edge Computing 180

10.4 Case Study . 183

10.5 Integration into an Edge Computing Framework 193

10.6 Conclusion and Outlook . 194

10.1 Introduction

The previous two chapters have investigated strategies for the placement of func-
tional application parts (Chapter 8) and data (Chapter 9). The concepts presented
in those two chapters can be leveraged to adapt an Edge Computing system at
runtime, e.g., by re-placing parts of applications or changing the storage location
of data. This chapter introduces another dimension of adaptation, building on
flexEdge, our concept for an Edge Computing execution framework that was in-
troduced in Chapter 7. In flexEdge, individual parts of applications are realized as
microservices, and can be composed into more complex services, forming a pro-
cessing chain of subsequent microservices. This is also the predominant execution
model, e.g., in Serverless Computing (see Section 7.2.3).

While we are able to adapt the management of the services, e.g., through the
placement of services (see Chapter 8), the services themselves and their internal
functioning remains non-adaptable. More specifically, microservices are imple-
mented to deliver a functionality in one particular way and cannot vary how the
functionality is provided, e.g., by providing different variants of a microservice.
Those variants may, for instance, differ in the algorithms they use to perform a

175

176 Chapter 10. Microservice Adaptations

task. As another example, some services need additional auxiliary data, which can
also be varied (e.g., by using different pre-trained models for machine learning
applications).

Overview of concept. Different variants of a microservice potentially have an im-
pact on two metrics: (i) the computational complexity, reflected in the execution
time and resource demand of a request, and (ii) the quality of result (QoR). The
latter can be defined and measured in different ways, e.g., by the accuracy of the
result, i.e., its deviation from a (numeric) optimum, or by the (subjective) percep-
tion of a user. Overall, these two metrics form a tradeoff, in the sense that more
accurate results typically require more computational effort, which leads to higher
execution times and/or increased resource demands. On the other hand, if we are
willing to sacrifice computational quality, we can perform the same tasks with fewer
resources.

This observation is especially remarkable in the context of Edge Computing,
if we recall some of its characteristics. On the one hand, computing resources
available in Edge Computing are less powerful compared to their cloud counter-
parts, making efficient computing an important requirement to cope with scarce
resources. Similarly, achieving resource elasticity is more challenging in Edge Com-
puting, since the total available resources at a given location are much more lim-
ited. On the other hand, many edge applications have stringent requirements on
the overall latency. At the same time, such mission-critical applications can be flex-
ible regarding the quality of the computation result. Examples can be found in the
domain of image or video processing, and for recognition tasks. To illustrate the
practical impact of inaccurate computations, Chippa et al. [Chi+13] surveyed dif-
ferent kinds of applications and found that, on average, applications spent 83 % of
their runtime on computations that are error-tolerant.

Current Edge Computing frameworks, however, do not consider this tradeoff
between computation effort and the quality of the computation result, and hence,
miss out on this optimization opportunity. In this chapter, we present the novel
concept of adaptable microservices. We re-define microservices as blueprints for the
delivery of a particular functionality that can be adapted w.r.t. (i) the algorithms
they use to perform a task, (ii) parameters, and (iii) auxiliary data required for the
computation. The possible variants are implemented within the program code of
a microservice and can be selected upon its instantiation. Additionally, through a
control channel, the current variant of a service instance can be changed at runtime.
The selection of the specific variant can be made according to certain requirements,
e.g., a maximum tolerable execution time or a minimum quality of result. Further-
more, by having service variants with varying resource requirements, service vari-
ants are a way to bring the much-valued resource elasticity of Cloud Computing
to the domain of Edge Computing. Service variations are applied to an individual
microservice, but they also have to be considered in the context of a microservice
chain. For example, changing a variant of one microservice might have a dispropor-
tionate impact on the overall quality or execution time of the entire service chain.

We propose to include this concept of adaptable microservices in an Edge Com-
puting framework. In such a system, clients would submit an abstract definition of
the desired microservice or service chain with their individual requirements regard-
ing execution time and QoR to a controller, which would in turn have to make the
following decisions: (i) which service variant to choose for instantiation in each step

10.2. Background and Related Work 177

of the chain, and (ii) the assignment of user requests to service instances (since mul-
tiple services in different variants might be available). Furthermore, the controller
might choose to change the variant of a particular microservice at runtime, e.g.,
switch the algorithm with which the service performs its task. Especially in cases
where microservice instances are shared between multiple microservice chains, this
becomes a non-trivial optimization problem, because users that share (parts of) a
chain might have conflicting optimization goals.

Summary of contributions. This chapter is intended to open up another dimen-
sion of adaptability in Edge Computing and presents an initial concept and case
study for adaptable microservices. In summary, the contributions of this chapter are
threefold:

• We propose the concept of adaptable microservices in the context of an Edge
Computing environment (Section 10.3). To do so, we revise our previously
proposed concept of microservices. We define the adaptability of microser-
vices in three dimensions (algorithms, parameters, and auxiliary data).

• In a first explorative study, we demonstrate the practical impact of service
variants using representative examples. First, we study how accurately we
can profile the execution times of service variants, using different hardware
setups and features (Section 10.4.4). Second, we evaluate the impact of the
variants for single microservices and for service chains (Section 10.4.5).

• We present a concept for the integration of adaptable microservices into an
existing Edge Computing framework (Section 10.5), detailing several com-
ponents required for the orchestration of those service variants across edge
surrogates and users.

10.2 Background and Related Work

Our contribution explores microservice adaptations in the context of Edge Com-
puting. Some previous works explore the adaptation of services in other contexts
(Section 10.2.1). We also review related work in the domain of approximate com-
puting (Section 10.2.2).

10.2.1 Service Adaptation

Adaptation of services has been explored in the context of service-oriented archi-
tectures (SOA) and Web Services (WS) [Pap03]. Chang et al. [CLK07] present a
survey of common adaptation methods in service-oriented computing. Hirschfeld
and Kawamura [HK06] define adaptability in three dimensions: what (e.g., compu-
tation/behavior or communication), when (e.g., at compile time or runtime), and
how (e.g., composition or transformation). Service adaptations can for instance be
realized using adaptation templates [Kon+06]. Moser et al. [MRD08] propose to
adapt WS-BPEL1 services. Contrary to our approach, they do not change the inter-
nal working of the service but replace one service with another. Besides adapting
the services, some have investigated the dynamic selection of adaptation strategies,
e.g., in [PS11].

1Web Service Business Process Execution Language

178 Chapter 10. Microservice Adaptations

From a software engineering point of view, variants of services can be realized
using Software Product Lines (SPL). SPLs are a development approach for reusable
and interchangeable software [McG+02]. SPLs are characterized by their variabil-
ity [vBS01] and this variability can for instance be represented with feature models
[BD07]. Olaechea et al. [Ola+12] present a language and tools for the model-
ing of SPLs, supporting multiple optimization goals. Based on such feature models,
Sanchez et al. [SMR13] present a heuristic-based method for the selection of an op-
timal configuration. Dynamic software product lines are capable of adapting, e.g.,
to user requirements or resource constraints [Hal+08]. As an example, Weckesser
et al. [Wec+18] examine the reconfiguration of dynamic software product lines.
Reconfiguration is done based on consistency properties and learned performance-
influence models. The authors however do not consider service chains, and hence,
cannot capture the interdependencies of adapting multiple services in a service
chain.

More recent works have proposed adaptations for microservices and in the con-
text of the IoT. Kannan et al. [Kan+19] present GrandSLAM, a microservice execu-
tion framework aimed at maximizing the throughput and reducing SLA2 violations.
They do not modify the microservices themselves but instead change the request
distributions by (i) reordering requests and (ii) batching requests. It is worth not-
ing that these techniques can be used in conjunction with our proposed approach.
Mendonça et al. [Men+18] discuss the tradeoff between generality and reusabil-
ity in self-adaptive microservices. Bhattacharya and De [BD17] survey adaptation
techniques in computation offloading, considering only the degree of concurrency
and workload heterogeneity as variations in the applications. Some works present
adaptation models for specific applications, e.g., streaming analytics [Zha+18a], or
to realize fault tolerance [Zho+15]. Others adapt the granularity of the services
and not the underlying functionalities [HB16]. In contrast, we present a general
concept for the adaptation of the internal functioning of microservices.

10.2.2 Approximate Computing

Approximate computing trades computation quality for a reduction in the required
effort to perform that computation [Mit16]. The motivation to use approximate
computing stems from the fact that in many problem domains of science and en-
gineering, exact results are not required, but only results that are good enough.
Examples can be found in the domain of digital signal processing, multimedia, and
data analytics. Besides algorithmic resilience, users are also tolerant of inaccurate
results. Examples are search results in information retrieval or the quality of images
and video streams. In addition, the usage context might also influence the required
computation quality [MFP20].

General related work & surveys. At the top level, we can distinguish between
hardware and software approaches for approximate computing [Mor+18b]. Xu
et al. [XMK16] classify approximate computing approaches into three layers:
(i) program, (ii) architecture, and (iii) circuit. According to this classification, our
approach of adaptable microservices falls into the first category. Moreau et al.
[Mor+18b] present a taxonomy for approximate computing techniques. Besides
the distinction between hardware and software techniques, the authors suggest

2Service Level Agreement

10.2. Background and Related Work 179

classifying techniques according to (i) architectural visibility, (ii) determinism, and
(iii) granularity. The survey from Mittal [Mit16] focuses only on the hardware
aspect of approximate computing. The author reviews approximate computing
techniques for different processing units (e.g., CPU, GPU, or FPGA) and possible
applications. In addition, examples of quality metrics for different applications are
presented. Regarding savings from approximate computing, related works consider
both the aspects of energy-saving [HO13; MSC15] and a reduction in the execu-
tion time [Agr+16]. Gao et al. [Gao+17] show how approximate computing is
beneficial on the hardware level in terms of saving resources and increasing secu-
rity. As for energy savings, Moreau et al. [MSC15] note that battery technology is
advancing slowly for mobile devices. This is in line with one of the main reasons
for performing Edge Computing (see Section 3.1), i.e., saving energy on mobile
devices.

Hardware-level approximate computing. Hardware approaches work by intro-
ducing imprecise logic components [Gup+11; Ye+13] or using techniques like volt-
age overscaling [Moh+11]. In Edge Computing, we cannot implement approximate
computing on a hardware level, given that we opportunistically leverage existing,
heterogeneous devices over which we have no direct control. Hence, we need to
move the concept of approximate computing to the software layer, i.e., modifying
the way that applications work.

Application-level approximate computing. One example for application-level
approximate computing is FoggyCache [Guo+18]. The authors propose to reuse
computation results across devices, based on the observation that similar contex-
tual properties map to the same or similar outcome. Perez et al. [PBC17] have
examined the latency-accuracy tradeoff in MapReduce jobs when applying approx-
imate computing. Chippa et al. [Chi+13] conduct a study in which they analyze
the resilience of different applications to result-inaccuracies. As demonstrated in
[Agr+16], different approximate computing techniques can be combined. The au-
thors use loop perforation, reduced precision computation, and relaxed synchro-
nization on applications from the domains of digital signal processing, robotics,
and machine learning. Their results suggest that up to 50 % in execution time can
be saved while producing acceptable results.

Programming frameworks. Park et al. [Par+14] present a framework for ap-
proximate programming. Developers can specify accuracy constraints through an-
notations and based on those, the framework automatically identifies operations
that are safe to approximate. Extensions to programming languages that support
specific data types to represent the characteristics of approximate computing have
been introduced in [BMM14] and [Sam+11]. Other works have demonstrated the
potential impact of approximate computing in different application domains, e.g.,
iterative methods [Zha+14], image compression [AKL18], rendering [WD10], arti-
ficial neural networks [Zha+15b], and deep learning [Che+18a].

Edge- & IoT-related. Few previous works exist that apply approximate comput-
ing to domains that are related to Edge Computing. Zamari et al. [Zam+17] com-
bine approximate computing with Edge Computing in an IoT scenario where sensor
data is to be sent to the cloud for analytics. In-transit edge nodes contribute to the

180 Chapter 10. Microservice Adaptations

analytics by carrying out intermediate computations. This is coupled with approx-
imate computing techniques on a software level, such as reducing the number of
iterations or skipping certain parameter values. Wen et al. [Wen+18] employ a
similar approach. They present ApproxIoT, combining approximate computing (by
using only samples of a raw data stream) with hierarchical processing. Schäfer et
al. [Sch+16a] introduce several metrics for the quality of computation (QoC), for
example, speed, precision, reliability, costs, and energy. They extend their Tasklet
system [Edi+17]—an offloading middleware for distributed computing—to provide
execution guarantees w.r.t. these QoC metrics. Compared to our adaptations, they
do so not by modifying the internal functioning of the computation unit but by
controlling their distribution across the surrogates. For example, constraints are
applied on which machines tasklets can be executed, and computations are carried
out in parallel or redundantly. Another difference to our approach is that tasklets
are more fine-grained, in the sense that they consist of application subroutines in-
stead of entire services.

Microservices & mobile devices. Gholami et al. [Gho+19] propose the usage
of different versions of a microservice (lightweight or heavyweight), primarily for
the purpose of scaling the application. They demonstrate how this multi-versioning
can be included in Docker containers. In a broader context, Pejovic et al. [Pej18]
outline the challenges for approximate computing on mobile devices with a focus
on the users’ needs. Similarly, Machidon et al. [MFP20] have noted that the field of
approximate computing for mobile devices still lags behind its counterparts in the
desktop and server environment. Using the example of mobile video decoding, the
authors demonstrate how the acceptable quality degradation can vary according to
the user’s current context.

Summary. Table 10.1 summarizes the landscape of related work in approximate
computing by listing representative examples. The bottom row of the table also
shows how our approach compares to the existing ones. Compared to previous
approaches, we propose three general adaptations to the internal functioning of
application components. The tradeoff between result quality and execution time
is especially relevant in Edge Computing applications such as image processing or
recognition tasks. While some works have investigated the automatic selection of
variants in the context of SPLs [SMR13], this has not been investigated in the con-
text of Edge Computing. In Section 10.5, we will present a concept for the integra-
tion of such a variant selection in an Edge Computing framework.

10.3 Adaptable Microservices for Edge Computing

In the remainder of this chapter, we use the term service adaptation to refer to the
internal functioning of the services. This definition stems from the observation that
a particular functionality can be implemented in different ways, leading to many
possible service variants between which we can switch at runtime. This adaptation
is orthogonal to other runtime optimizations that can be taken to provide certain
guarantees, e.g., the scaling of microservices or their migration. Compared to costly
migration and (re-)placement strategies, we believe that our approach is a sensible
alternative because it allows for a quick reconfiguration of instance variants and,
therefore, service instances can be kept active for a longer period of time.

10.3. Adaptable Microservices for Edge Computing 181

R
ef

er
en

ce
Ty

pe
of

ap
pr

oa
ch

D
es

cr
ip

ti
on

Fo
cu

s

[G
up
+

11
;Y

e+
13
]

ha
rd

w
ar

e
/

lo
gi

c
de

si
gn

us
ag

e
of

im
pr

ec
is

e
lo

gi
c

co
m

po
ne

nt
s

sa
vi

ng
s

in
en

er
gy

an
d

re
qu

ir
ed

ar
ea

[M
oh
+

11
]

ha
rd

w
ar

e
/

po
w

er
m

an
-

ag
em

en
t

pe
rf

or
m

in
g

vo
lt

ag
e

ov
er

sc
al

in
g

tr
ad

eo
ff

be
tw

ee
n

en
er

gy
co

ns
um

pt
io

n
an

d
er

ro
r

ra
te

s

[P
ar
+

14
]

so
ft

w
ar

e
/

fr
am

ew
or

k
de

te
rm

in
in

g
op

er
at

io
ns

th
at

ar
e

sa
fe

to
ap

pr
ox

im
at

e,
ba

se
d

on
sp

ec
ifi

ed
ac

cu
-

ra
cy

co
ns

tr
ai

nt
s

en
er

gy
sa

vi
ng

s
an

d
re

du
ct

io
n

in
pr

o-
gr

am
m

er
ef

fo
rt

[G
uo
+

18
]

so
ft

w
ar

e
/

ge
ne

ra
l

re
us

e
of

ca
ch

ed
co

m
pu

ta
ti

on
re

su
lt

s
ac

ro
ss

de
vi

ce
s

re
du

ct
io

n
in

la
te

nc
y

an
d

en
er

gy
co

n-
su

m
pt

io
n

[Z
am
+

17
;W

en
+

18
]

so
ft

w
ar

e
/

ap
pl

ic
at

io
n-

sp
ec

ifi
c

co
m

bi
ne

ap
pr

ox
im

at
e

co
m

pu
ti

ng
w

it
h

ed
ge

an
al

yt
ic

s
of

Io
T

da
ta

sp
ee

du
p-

ac
cu

ra
cy

tr
ad

eo
ff

[S
ch
+

16
a]

so
ft

w
ar

e
/

ge
ne

ra
l

co
nt

ro
lli

ng
th

e
di

st
ri

bu
ti

on
of

co
m

pu
ti

ng
un

it
s

ac
ro

ss
su

rr
og

at
es

pr
ov

id
in

g
qu

al
it

y
of

co
m

pu
ta

ti
on

(Q
oC

)
gu

ar
an

te
es

[G
ho
+

19
]

so
ft

w
ar

e
/

ge
ne

ra
l

m
ul

ti
-v

er
si

on
in

g
of

so
ft

w
ar

e
w

it
h

di
ff

er
-

en
t

D
oc

ke
r

co
nt

ai
ne

rs
ad

ap
t

so
ft

w
ar

e
to

di
ff

er
en

t
pe

rf
or

m
an

ce
re

qu
ir

em
en

ts

[M
FP

20
]

so
ft

w
ar

e
/

ap
pl

ic
at

io
n-

sp
ec

ifi
c

do
w

ns
am

pl
in

g
of

vi
de

o
re

so
lu

ti
on

on
m

ob
ile

de
vi

ce
s

en
er

gy
sa

vi
ng

s
w

it
h

ac
ce

pt
ab

le
qu

al
it

y
de

gr
ad

at
io

n

Se
ct

io
n

10
.3

so
ft

w
ar

e
/

ge
ne

ra
l

pr
ov

id
e

m
ic

ro
se

rv
ic

e
ad

ap
ta

bi
lit

y
in

th
re

e
di

m
en

si
on

s
tr

ad
eo

ff
be

tw
ee

n
re

su
lt

qu
al

it
y

an
d

ex
e-

cu
ti

on
ti

m
e

TA
B

LE
10

.1
:

E
X

A
M

P
LE

S
O

F
A

P
P

R
O

A
C

H
E

S
F

O
R

A
P

P
R

O
X

IM
AT

E
C

O
M

P
U

T
IN

G

182 Chapter 10. Microservice Adaptations

Contrary to previous approaches, our concept of adaptable microservices com-
bines the following three characteristics: (i) we adapt the internal functioning of a
microservice, i.e., we operate on the application level and adaptations are imple-
mented in the program code of the microservices, (ii) we propose adaptations in
three general dimensions, and (iii) we envision a control entity that automatically
selects and changes the service variants at runtime. This section focuses on the first
two characteristics and presents our conceptual model. Section 10.5 details the
integration into an Edge Computing framework that controls the variant execution.

We propose to make microservices adaptable in the following three dimensions:

(i) ALGORITHMS | A task can typically be performed by a variety of algorithms.
Those not only differ in their runtime complexity, and hence, result in varying
execution time, hardware requirements, and energy consumption, but also in
their suitability for different applications. Taking the example of compressing
an image, some compression algorithms are better suited for photographs
while others perform better on vector graphics.

(ii) PARAMETERS | Parameters are variable inputs to the microservice that influ-
ence its execution behavior. We model parameters as key-value pairs. Param-
eters can, for example, customize the algorithm that is used. Taking the same
example of image compression, the desired image quality would be a param-
eter for such a microservice. Parameters can also be used to explicitly limit
the execution time of a microservice, e.g., via loop perforation3 [Sid+11].

(iii) AUXILIARY DATA | Some algorithms require auxiliary data to function. This
data is often retrieved from external sources. An example in the domain of
machine learning are pre-trained models. This auxiliary data can also influ-
ence the execution time and the computation result. For example, in recog-
nition tasks performed by neural networks, more complex models produce
more accurate results, but require more computing resources or take longer
to complete the task.

Algorithm

aux. data

Parameters

FIGURE 10.1: VARIANTS OF ADAPTABLE MICROSERVICES

Figure 10.1 visualizes the concept of adaptable microservices. A given service
might be variable in one or more of these dimensions. We define the possible

3loop perforation refers to skipping certain iterations in a loop or breaking the loop after a number
of iterations.

10.4. Case Study 183

combinations of all three adaptation dimensions as service variants (denoted with
V1, V2, V3 in the figure).

DEFINITION 10.1: SERVICE VARIANTS

Given a set of implemented algorithms � , parameters � , and auxiliary data
� for a microservice, a service variant VarM of a microservice M is defined as
VarM ⊆� ×� ×� with pi = vi , i = 1 . . . n as values for the parameters. Note
that � and � are finite sets, whereas � typically is an uncountable set, e.g.,
in case the parameters contain real numbers.

We assume that there are no variants across a service chain that are mutually
exclusive. Should one want to consider this case, constraint solvers can be for se-
lecting valid variants [BSC10]. We further assume that each of the variants is im-
plemented in the microservice. For example, if a microservice can be implemented
using different algorithms, all those algorithms are included in the source code of
the service. At any given time, a service maps its current variant to an internal state
that determines how it is executed when requests are processed.

The different service variants impact the result of the computation in two ways.
First, the execution time varies, e.g., when less complex algorithms are invoked or
loop iterations are skipped. Naturally, this leads to a reduced energy consumption
of the surrogate which executes the microservice. Second, service variants impact
the quality of result (QoR). Depending on the application, QoR needs to be defined
differently. We can divide QoR-metrics into two categories: (i) user-centered and
(ii) numeric. For user-centered metrics, techniques like questionnaires or focus
groups can be used to assess the perceived quality of result. Note that this might
not only vary from one user to another but also might depend on the usage context
(as noted in [MFP20]). As a numeric metric, we can for example quantify the error
in the computation, i.e., the deviation from a numeric optimum or the accuracy of
the result.

10.4 Case Study

In a first case study, we build a test environment to demonstrate our concept (Sec-
tion 10.4.1). We implement six different microservices (Section 10.4.2) that are
adaptable in different aspects, and with those, we construct two microservices
chains (Section 10.4.3). First, we study how accurately we can construct a model
to estimate the execution time of those services (Section 10.4.4). The results
also allow us to identify which features (e.g., hardware characteristics) are the
most relevant for such a model. Then, we demonstrate the practical impact of
the different service variants on the execution time and (where applicable) QoR
(Section 10.4.5).

10.4.1 Implementation and Test Environment

For the implementation, we partly rely on concepts and components of flexEdge
(see Chapter 7). The microservices follow the design that was presented in Sec-
tion 7.3.1. Microservices are executed on the agents of flexEdge (see Section 7.4.3).
We implement the possibility to select the microservice variant at the start of the
service by passing arguments to the Docker CLI that are then parsed by the service

184 Chapter 10. Microservice Adaptations

at its start. For the case study, we manually select the microservice variant to study
its impact and do not rely on the flexEdge controller. Future work will incorporate
the specification of user constraints and the automatic selection and adaptation of
service variants by the controller (see Section 10.6).

In addition to the queue that holds requests, each microservice instance is ex-
tended with a control queue, which also uses RabbitMQ as a message broker. Mes-
sages are published to this queue to trigger a change in a service variant. Similarly,
through a REST-style API, the microservices can be queried to retrieve which vari-
ant is currently active. To provide this interface, each microservice implements an
abstract Microservice Manager class. This implementation is then connected to a
listener for the control queue in order to parse incoming requests. As an example,
Figure J.1 in Appendix J shows a UML class diagram for this functionality of the
face detection microservice.

We use a similar setup as described in Section 7.6.1. The controller and mi-
croservice store run on the same hardware as described there. We also use the same
Lenovo ThinkCentre M920X Tiny as one edge agent node. In addition, for different
experiments we use different AWS EC2 virtual machines. Requests are issued from
a computer in the same local network as the controller, agent, and microservice
store.

10.4.2 Microservices

We implement the following adaptable microservices, as summarized in Table 10.2:

TABLE 10.2: OVERVIEW OF SERVICE VARIANTS

Microservice
Variants

Algorithms Parameters Auxiliary Data

Face {LBP-Classifier, {scale-factor,

detection Haar-Classifier} min-neighbors } �
{faster_rcnn_inception_v2_

coco, ssd_mobilenet_v1_coco,

ssd_mobilenet_v1_fpn,
Object

ssd_mobilenet_v1_ppn,
detection

ssd_mobilenet_v2_coco,

ssd_resnet50_v1_fpn,

� �

ssdlite_mobilenet_v2_coco}
Image {compression-

compression
�

quality} �
Image {Gaussian blur,

blurring Median blur} {kernel-size} �
Image {psnr-large, psnr-small,,

upscaling
� �

noise-cancel,gans}
3D mesh re- {meshrcnn,pixel2mesh,

construction
� �

sphereinit,voxelrcnn}

10.4. Case Study 185

(i) FACE DETECTION | This microservice was introduced in Section 7.5.1. Its vari-
ants differ in algorithms and parameters. For the algorithms, we can use
two different types of cascade classifiers available in OpenCV4: (i) LBP and
(ii) Haar. In general, LBP is faster but produces less accurate results. The mi-
croservice furthermore expects two parameters: (i) scale-factor and (ii) min-
neighbors. The first parameter determines the scaling between two levels of
up- or downscaling (because both algorithms work only on predefined model
dimensions). The second parameter min-neighbors specifies the minimum
number of neighbors for candidate rectangles for those to be retained. Higher
values for this parameter lead to fewer faces being detected but at the same
time, this also decreases the number of false-positives.

(ii) OBJECT DETECTION | This microservice was also introduced in Section 7.5.1.
The microservice uses different auxiliary data with pre-trained tensorflow
models5. The models differ in their execution speed and mean average pre-
cision. In total, we use six different models.

(iii) IMAGE COMPRESSION | Using the image encoding function of OpenCV, this
microservice compresses a given input image using JPEG. JPEG is a lossy
compression method. As the only variation, the compression quality can be
specified as a parameter.

(iv) IMAGE BLURRING | Given an input image and an array of rectangular regions,
this microservice blurs the given regions of the image. To perform the opera-
tion, we use OpenCV’s blur function. The blurring can be performed by two
different algorithms: (i) Gaussian blur and (ii) median blur. The Gaussian
blur is a linear filter that is faster but does not preserve edges in the origi-
nal image. In contrast, the median blur is a non-linear filter that is able to
preserve edges. For both algorithms, a kernel size is used as a parameter to
determine the size of the convolution matrix.

(v) IMAGE UPSCALING | This microservice produces an upscaled image of the input
image. It also aims at enhancing the quality of the upscaled image by using
Residual Dense Networks (RDN). We use an existing Keras6-based implemen-
tation7 as a basis for our microservice. We use four different pre-trained mod-
els that are variants of auxiliary data: psnr-large, psnr-small, noise-cancel, and
gans. Except for the gans model (which quadruples the resolution), these
models double the original image resolution.

(vi) 3D MESH RECONSTRUCTION | This microservice aims at reconstructing a 3D
mesh representation of an object in a (2D) picture. Gkioxari et al. [GJM19]
showed how this can be achieved using convolutional neural networks. We
use the author’s published code8 as the basis for our microservice. Four dif-
ferent models are used as auxiliary data. Some reconstruct only the shape of
the object while others use voxels to achieve a more realistic representation
of the object.

4see https://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html (accessed: 2020-04-06)
5https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

(accessed: 2020-04-22)
6https://keras.io/ (accessed: 2020-04-21)
7https://github.com/idealo/image-super-resolution (accessed: 2020-04-16)
8https://github.com/facebookresearch/meshrcnn (accessed: 2020-04-16)

186 Chapter 10. Microservice Adaptations

10.4.3 Microservice Chains

From the microservices described in the previous Section 10.4.2, we construct two
service chains. These service chains represent prominent applications in the do-
mains of computer vision, recognition, and machine learning. Service chains with
different variants can also represent use cases in which data is pre-processed for
a more efficient offloading (termed offload shaping [Hu+15a]) of subsequent mi-
croservices, e.g., as investigated in [Li+15].

(i) FACE ANONYMIZATION | Given an image as input, this chain anonymizes faces
by blurring them. First, the original image is compressed. Afterward, a face
detection is performed, outputting detected faces as rectangular coordinates
to the next service. As a final step, the image blurring microservices blurs the
regions returned by the face detection microservice. An illustrative example
of this service chain is shown in Figure 10.2(a).

(ii) 3D MESH RECONSTRUCTION OF UPSCALED IMAGES | This microservice chain
first performs an upscaling of an input image and then reconstructs a 3D mesh
from the upscaled image. Figure 10.2(b) illustrates an example execution of
this chain.

10.4.4 Execution Time Estimation

First, we study how accurately we can model the execution time of the microservices
and which features are relevant for creating a model of the execution time that is as
accurate as possible. In an Edge Computing framework where adaptable microser-
vices are integrated (see Section 10.5), this step would be performed offline and
serve as base knowledge for runtime decisions. It would allow, for instance, to esti-
mate the execution time of a request and based on this estimation, make decisions
about the placement or user-to-instance assignments.

Methodology and experimental setup. To estimate the execution time of mi-
croservices, we build regression models using supervised learning methods. We use
three variants of estimators implemented in scikit-learn9, a machine learning library
for Python: (i) decision trees regressor, (ii) random forest regressor, and (iii) ex-
tra tree regressor. For each estimated model, the R2-score is computed to assess its
quality. This metric gives an indication of how accurate the model is.

To analyze the impact of different underlying hardware configurations, we run
this evaluation on different AWS EC2 instances types as summarized in Table 10.3.
They differ in CPU and memory configuration and are optimized for either general-
purpose, computing, or memory-intensive applications. For each instance type, we
run benchmarks of the face detection and object detection microservice. During
the execution of the microservices, we also record statistics on available hardware
resources and system load. Those will serve as possible features to build a model
of the execution time (for instance, to be able to predict the execution time given
different load levels on the system).

For the face detection, we use the two different face detection algorithms, LBP
and Haar [Kad+14]. The scale-factor parameter is varied from 1.0 to 1.9 in 0.1
increments and values for min-neighbors are varied from 1 to 10. We use 46 160

9https://scikit-learn.org (accessed: 2020-04-13)

10.4. Case Study 187

Image
Compression

Face
Detection

Image
Blurring

(a
)

Fa
ce

an
on

ym
iz

at
io

n

Image
Upscaling

3D Mesh
Reconstruction

(b
)

3D
m

es
h

re
co

ns
tr

uc
ti

on
of

up
sc

al
ed

im
ag

es

FI
G

U
R

E
10

.2
:

M
IC

R
O

S
E

R
V

IC
E

C
H

A
IN

S
U

S
E

D
F

O
R

T
H

E
E

V
A

LU
AT

IO
N

188 Chapter 10. Microservice Adaptations

TABLE 10.3: INSTANCE TYPES USED FOR BENCHMARKING

Type vCPUs Clock rate Memory Remarks

t2.micro 1 2.5 GHza 1 GB general-purpose

t2.small 1 2.5 GHza 2 GB general-purpose

t2.medium 2 2.3 GHzb 4 GB general-purpose

t2.large 2 2.3 GHzb 8 GB general-purpose

t2.xlarge 4 2.3 GHzb 16 GB general-purpose

t2.2xlarge 8 2.3 GHzb 32 GB general-purpose

c5.large 2 3.4 GHzc 4 GB compute-optimized

c5.xlarge 4 3.4 GHzc 8 GB compute-optimized

c5.4xlarge 16 3.4 GHzc 32 GB compute-optimized

r5d.large 2 3.1 GHzd 16 GB memory-optimized

r5d.2xlarge 8 3.1 GHzd 64 GB memory-optimized
aIntel Xeon Family
bIntel Broadwell E5-2695v4
c Intel Xeon Platinum 8124M
d Intel Xeon Platinum 8175

different images from the WIDER FACE10 dataset. For the object detection, we use
two different models (ssd_mobilenet_v1_coco and faster_rcnn_inception_v2_coco) on
the val2017 dataset included in the Coco Dateset11.

For each instance type, we list the combination of features and regression meth-
ods that lead to the highest R2-score. Features can be properties related to the
variant of the microservice (e.g., a parameter) or attributes of the machine where it
is executed. Table 10.4 shows the results for the face detection and Table 10.5 the
results for the object detection. In the table, the features are ordered in decreasing
order of importance, i.e., to what extent they contribute to the prediction of the
execution time.

Impact of the machine types. From the results, we can observe that especially
with the more powerful machines, we can achieve high R2-scores and, hence, a high
accuracy of the model. For less powerful types of machines, e.g., the t2.micro and
t2.small, we get much lower scores. This is likely due to a greater variance in execu-
tion times that happens because t2-type instances are so-called burstable instances,
i.e., if the system is overloaded, the CPU performance of the virtual machine is tem-
porarily increased. Since this is likely to happen with the least powerful types we
used, the high variance of execution times is due to the constant on-off switching
of the performance boost.

Differences in estimators and features. As a second observation, in all but one
case (face detection on a c5.4xlarge instance), the extra tree regressor led to the
highest R2-score. We can also observe great differences in the most relevant fea-
tures for the execution time estimation. These differences can both be seen within

10http://shuoyang1213.me/WIDERFACE/ (accessed: 2020-04-25)
11http://cocodataset.org/ (accessed: 2020-04-25)

10.4. Case Study 189

TABLE 10.4: EXECUTION TIME ESTIMATION RESULT FOR THE FACE DETECTION MI-
CROSERVICE

Instance Regressor Featuresa R2-Score

t2.micro Extra Tree SF, DF-A, MN 0.4675

t2.small Extra Tree CF, DF-A, MEM-A 0.4317

t2.medium Extra Tree CF, CPU-U, DF-C 0.8717

t2.large Extra Tree CPU-U, CF, SF, NF 0.9456

t2.xlarge Extra Tree CPU-U, CF, SF, MN, NF 0.9842

t2.2xlarge Extra Tree CF, SF, CPU-U, NF 0.9856

c5.large Extra Tree CF, SF, CPU-U, NF 0.9887

c5.xlarge Extra Tree CF, SF, CPU-U, NF 0.9914

c5.4xlarge Decision Tree
CF, CPU-U, SF, CPU-F, MEM-U,

0.9965
DF-C, MEM-A

r5d.large Extra Tree CF, SF, CPU-U, NF 0.9883

r5d.2xlarge Extra Tree CF, SF, CPU-U, NF 0.9860
aCF: classifier, CPU-F: CPU frequency, CPU-U: CPU usage,

DF-A: detected faces (absolute number), DF-C detected faces (correct percentage),

MEM-A available memory, MEM-U: used memory,

MN min-neighbors, NF number of faces, SF: scale-factor

TABLE 10.5: EXECUTION TIME ESTIMATION RESULT FOR THE OBJECT DETECTION MI-
CROSERVICE

Instance Regressor Featuresa R2-Score

t2.micro n.ab

t2.small Extra Tree M, CPU-U, MEM-T 0.5651

t2.medium Extra Tree
MEM-AP, M, MEM-U,

0.6938
C, CPU-F

t2.large Extra Tree M, MEM-A, MEM-U 0.6827

t2.xlarge Extra Tree M, MEM-A, MEM-T 0.6412

t2.2xlarge Extra Tree M, MEM-AP, CPU-U 0.7690

c5.large Extra Tree M, CPU-U, MEM-T 0.9970

c5.xlarge Extra Tree M, CPU-U, MEM-T 0.9969

c5.4xlarge Extra Tree M, CPU-U, MEM-T 0.9968

r5d.large Extra Tree M, CPU-U, MEM-T 0.9968

r5d.2xlarge Extra Tree M, CPU-U, MEM-T 0.9970
aC: correctness, CPU-F: CPU frequency, CPU-U: CPU usage, M: model,

MEM-AP: available memory (percentage), MEM-A available memory (absolute),

MEM-T total memory, MEM-U: used memory
bhardware configuration not sufficient to run the microservice

one microservice, depending on the instance type, and across microservices. The
estimation for the face detection mostly used the classification algorithm as the

190 Chapter 10. Microservice Adaptations

most relevant feature. With more powerful hardware, the classifier, the scale-factor
parameter, and the current CPU usage are consistently ranked the most relevant
features, while for less powerful machines, the min-neighbors parameter and the
number of detected faces were included in the features.

Contrary to the face detection microservices, for the object detection, we can see
a clearer division of relevant features depending on the instance type. While for t2-
type instances, the available memory is always a highly ranked feature (except for
the t2.small instance), this changes in favor of the CPU utilization for c-type and r-
type machines. Another difference is that the t2-type instances lead to significantly
lower accuracies of the model, as shown by the R2-score.

Summary. In summary, this analysis of execution time estimators has shown that
we are able to accurately profile the different variants of microservice. This is an
important building block for the selection and adaptation of suitable microservice
variants at runtime. However, we could also observe that this estimation has to be
tuned to the individual microservice w.r.t. the selection of the hardware and fea-
tures that are used for the estimation. This further motivates our design presented
in Section 10.5, in which the offline model is periodically updated with runtime
statistics from the execution environment.

10.4.5 Impact of Service Variants

We now study the impact of the different microservice variants. To do so, we mea-
sure the correlation between different variables that relate to the service variants
and the outcomes of the computations. Most importantly, we want to assess the
change in execution time. In addition, for the face detection algorithm and, con-
sequently, for the face anonymization service chain, we also analyze the impact on
the quality of the result.

To measure the pairwise correlation between variables, we use the Kendall rank
correlation coefficient throughout this section. Contrary to other metrics for corre-
lation, such as the Pearson correlation coefficient, it has the advantage that it does
not assume a linear relationship between variables.

face detection

algorithm

min-neigbors

given faces

detected faces

correctnes

compression quality

blurring algorithm

execution time

face detection
algorithm 1.00 0.00 0.00 -0.10 -0.10 0.00 0.00 -0.68

min-neighbors 1.00 0.00 -0.16 -0.26 0.00 0.00 -0.08

given f 1.00 0.65 0.27 0.00 0.00 0.09

detected 1.00 0.70 0.02 0.00 0.16

correctness 1.00 0.04 0.00 0.16

compression quality 1.00 0.00 0.05

blurring algorithm 1.00 0.05

execution time 1.00

FIGURE 10.3: FACE BLURRING CHAIN: CORRELATION MATRIX OF VARIANTS

10.4. Case Study 191

Face anonymization service chain. For the first chain, we vary the image com-
pression quality from 1–99 (in steps of 1). We use the two face detection algo-
rithms as described before. The scale-factor parameter is set to a constant 1.2, and
min-neighbors are varied from 0–9 (step size 1). For the final step, the blurring
microservice, we use gaussian blur and median blur algorithms with a fixed kernel
size of (23,23). We select 21 images and manually label the correct positions of
the faces. Hence, with a small degree of tolerance, besides the absolute number of
detected faces, we can also compute a correctness value that serves as a metric for
the QoR. For each image and combination, we executed the chain five times and
averaged the results.

Figure 10.3 shows the correlation matrix of the entire chain. We can observe
that the highest correlation value is attained among the face detection algorithm
and the execution time. To map this correlation to concrete numbers, on average,
the execution time using the Haar classifier was 0.13 s, while for the LBP classifier
it averaged to 0.08 s. This means that by changing the variant of the algorithm, we
could achieve a reduction in the execution time of 38.46 %. However, this reduction
in execution time came at the cost of a reduced correctness value, which dropped
from 0.67 to 0.57 on average (-14.92 %). This provides a good example of the
tradeoff between the computation complexity (represented by the execution time)
and the quality of result (represented by the correct recognition of faces) that is
possible to adapt with different microservice variants.

Compared to the face detection algorithm, other variables related to the vari-
ants, i.e., min-neighbors, compression quality, and blurring algorithm correlate with
the execution time with values of -0.08, 0.05, and 0.05, respectively. It is worth
noticing that min-neighbors has a much more significant impact on the correctness
(with a correlation value of -0.26) than on the execution time.

execution time

compression quality

execution time 1.00 0.04

compression quality 1.00

(a) Image compression

execution time

blurring algorithm

execution time 1.00 0.22

blurring algorithm 1.00

(b) Image blurring

algorithm

min-neigbors

given faces

detected faces

correctnes

execution time

algorithm 1.00 0.00 0.00 -0.10 -0.10 -0.71

min-neighbors 1.00 0.00 -0.16 -0.26 -0.03

given fac 1.00 0.65 0.27 0.14

detecte 1.00 0.70 0.25

correctness 1.00 0.24

execution time 1.00

(c) Face detection

FIGURE 10.4: CORRELATION MATRICES FOR THE INDIVIDUAL SERVICE VARIANTS OF

THE FACE ANONYMIZATION CHAIN

We also provide the correlation matrices of the individual services of this chain in

192 Chapter 10. Microservice Adaptations

Figure 10.4. Comparing Figure 10.4 with Figure 10.3 demonstrates the difference
in correlation of a single microservice versus when this microservice is integrated
into a chain. As an example, when executed alone, the blurring algorithm has a
correlation value of 0.22 with the execution time but in the entire chain, this value
drops to 0.05. A similar change in the correlation score can be observed for the face
detection algorithm (-0.68 to -0.71).

3D mesh reconstruction of upscaled images. For both the image upscaling and
3D mesh reconstruction microservice, we use the four different variants as listed in
Table 10.2. As input data, we used 5 images from a dataset depicting furniture12.
Because the mesh reconstruction microservices offers GPU support, we execute this
service chain on an AWS EC2 p2.xlarge instance (Xeon E5-2686 v4, 61 GB RAM,
Nvidia K80 GPU).

Figure 10.5 shows the correlation matrix for the entire chain and Figure 10.6
the matrices for the individual microservices. Note that for this microservice chain,
we leave the exploration of suitable QoR-metrics for future work and focus on the
execution times.

upscaling model

mesh construction model

input resolution

output resolution

execution time

upscaling model 1.00 0.00 0.00 0.46 0.28

mesh construction model 1.00 0.00 0.00 -0.07

input resolution 1.00 0.00 0.41

output resolution 1.00 0.26

execution time 1.00

FIGURE 10.5: MESH RECONSTRUCTION CHAIN: CORRELATION MATRIX OF VARIANTS

execution time

model

input resolution

output resolution

execution time 1.00 0.28 0.41 0.26

model 1.00 0.00 0.46

input resolution 1.00 0.60

output resolution 1.00

(a) Image upscaling

execution time

model

input resolution

output resolution

execution time 1.00 0.04 0.49 0.55

model 1.00 0.00 0.00

input resolution 1.00 0.60

output resolution 1.00

(b) 3D mesh reconstruction

FIGURE 10.6: CORRELATION MATRICES FOR THE INDIVIDUAL SERVICE VARIANTS OF

THE MESH RECONSTRUCTION CHAIN

The results show that the variants of the upscaling model have more influ-
ence than the different mesh reconstruction models (correlation scores of 0.28 and
-0.07). As an example, the psnr-small model for image upscaling has an average

12https://www.kaggle.com/akkithetechie/furniture-detector/data (accessed: 2020-04-24)

10.5. Integration into an Edge Computing Framework 193

execution time of 11.55 s while the psnr-large model averages to 58.94 s. The mean
values for the noise-cancel and gans models are 63.93 s and 36.36 s, respectively.
This means that by selecting another variant of an image upscaling model, we can
reduce the execution time up to 81.93 %. In comparison, the differences for the
average execution times of the mesh construction models are smaller (41.26 s for
meshrcnn, 42.01 s for pixel2mesh, 43.12 s for sphereint, and 44.38 s for voxelrcnn).
Hence, here the maximum difference in execution time only amounts to 7.03 %.
Naturally, there is also a strong correlation (0.41 and 0.26) of the execution time
with the input and output resolution of the upscaled images.

10.5 Integration into an Edge Computing Framework

request queue

control queue

Microservice
Store

Re
so

ur
ce

 &

pl
an

ni
ng

 la
ye

r
Ru

nt
im

e
co

nt
ro

l
la

ye
r

Ex
ec

ut
io

n
la

ye
r

V2
V1

V3Offline profiler

Variant selection &
adaptation

Edge agent

Controller

V1

1

2

3
4V1

V2

Execution time
estimations

ex
ec

ut
io

n
tim

e
st

at
ist

ics

va
ria

nt
ad

ap
ta

tio
n

FIGURE 10.7: INTEGRATION OF ADAPTABLE MICROSERVICES INTO AN EDGE COMPUT-
ING FRAMEWORK

Starting from the basis of our microservice-based Edge Computing framework
flexEdge (see Chapter 7), this section presents the conceptual design for the integra-
tion of service variants into the framework, including new control and monitoring
functionalities. Hence, this chapter serves as a blueprint for future work to include
our presented concepts into a production-grade Edge Computing system.

194 Chapter 10. Microservice Adaptations

Overview of system design. Figure 10.7 shows an overview of our proposed inte-
gration concept. Components that are additions to the original flexEdge framework
are marked with a yellow star. We structure the design of our system into three lay-
ers: (i) a resource and planning layer that provides the adaptable microservices and
profiling of the services, (ii) the runtime control layer that manages the variants of
the services, and (iii) the execution layer, where the service variants run on the edge
agents.

Profiling and monitoring of adaptive services. Variants of a microservice are in-
cluded in its implementation. For each variant, an offline profiler creates a model to
estimate the execution time, given different input sizes. This information serves as
a basis for the controller for choosing suitable variants at the start of a microservice
or change the variants of running services. Given the heterogeneity of execution
environments, not all possible hardware configurations and runtime characteris-
tics (e.g., the current resource usages on the agents) can be considered. Hence,
this information is gradually updated at runtime with collected statistics from the
agents.

Changing service variants. During the execution of a microservice, its variant can
be changed. This is done through a dedicated control queue associated with each
microservice instance. As an example, in Figure 10.7, the service variant is changed
from V1 to V2. This adaptation at runtime can be done for a number of reasons,
e.g., when a constraint on the execution time cannot be met, a service might be
instructed by the controller to switch to a variant that produces less accurate but
faster results.

Control flow. Users can submit their requests for the execution of a service with a
constraint on the execution time or the quality of result (shown as � in Figure 10.7).
Based on these constraints and the information from the profiler, a suitable service
variant is selected (step �), instantiated (step �), and can then take user requests
(step �). Note that for simplicity reasons, the figure only depicts a single microser-
vice. For service chains, the decision-making process is made across all services
in the respective chain. Besides further algorithmic contributions (e.g., w.r.t. mi-
croservice placement and user-to-instance assignments), this will require scalable
monitoring and control mechanisms (see Section 10.6).

10.6 Conclusion and Outlook

In this chapter, we have revised our previously defined concept of microservices.
Based on three properties of Edge Computing and its applications—constrained re-
sources, tight constraints on the execution time, and flexibility regarding the quality
of the computations—we proposed the general concept of adaptable microservices.
Specifically, we defined microservices to be adaptable in three aspects, related to
the internal functioning of the microservices.

In an initial study, we first studied how accurately we can estimate the execution
time of an individual service. This is an important building block for an integrated
control system that selects service variants at runtime and assigns users to different
service variants.

10.6. Conclusion and Outlook 195

Adaptable microservices allow trading the quality of computations for lower
resource utilization (manifested for example in a reduced execution time). Sec-
tion 10.4.5 has demonstrated this for prominent real-world use cases in the domain
of recognition and computer vision tasks. For such complex tasks, we showed that
switching to an other microservice variant can substantially reduce the execution
time. Alternatively, the less complex variant could be run on less powerful hard-
ware. Compared to Cloud Computing, clustering vast amounts of resources in one
location is not possible to the same extent in Edge Computing (e.g., because of
limited physical space at points of presence). For this reason, elasticity is typically
lower in Edge Computing. The proposed concept of microservice variants can help
in mitigating this limited elasticity by adapting the services to the limitations of the
execution infrastructure and not vice versa.

As the next step, control mechanisms for the automatic selection and change of
service variants at runtime need to be implemented in our Edge Computing frame-
work flexEdge, as conceptualized in Section 10.5. In particular, we identify the
following aspects as a roadmap for future work:

HIERARCHICAL MONITORING AND CONTROL | To ensure that application-specific
constraints w.r.t. the execution time and result quality are met, the execution
of service chains needs to be monitored. Given the highly distributed nature
of the surrogates, having only one centralized controller does not meet the
scalability requirements of Edge Computing. Hence, we envision hierarchical
monitoring and control mechanisms.

VARIANT SELECTION AND ADAPTATION | Based on continuous monitoring of the ex-
ecution environment, the available resources on the surrogates, and user re-
quirements, future work will investigate strategies for the selection and adap-
tation of service variants. This is a challenging optimization problem, espe-
cially when microservice instances are shared across users that specify differ-
ent execution constraints.

NETWORK CONTROL LAYER | In a distributed Edge Computing system, not only the
resources on the edge nodes and the microservices’ complexity influence the
execution time but also the network conditions and types of connections be-
tween the nodes (e.g., when the microservices of one service chain run on dif-
ferent nodes). Future work should take this into consideration in two aspects:
First, fine-grained monitoring of network conditions can help in making run-
time decisions for the placement and assignment of microservices. Second,
we can extend the control itself to the network layer, e.g., by reserving band-
width on links or using SDN to control the data flow between edge nodes.

DEFINING AND WEIGHTING MULTIPLE QOR METRICS | As we have noted, the quality
of a computation can be defined in different ways. However, the interplay be-
tween user-perceived QoR and mathematical metrics for QoR is not well un-
derstood yet. Furthermore, it remains unclear how both types of QoR should
be weighted if they are part of one service chain.

DEFINING SERVICE VARIANTS THROUGH SPLS | Software product lines allow for a
general modeling of application variants. Using this established technique
would also make it possible to model more complex dependencies between
variants (e.g., when certain combinations of variants are mutually exclusive).

196 Chapter 10. Microservice Adaptations

ONLINE REFINEMENT OF EXECUTION TIME MODELS | We have built offline regres-
sion models for the execution time estimation of microservices. Such models
cannot, however, take into account all possible hardware and input data that
will occur once a service is deployed. Therefore, the models should be re-
fined at runtime with statistics that are collected on the edge nodes during
the execution of microservices.

Part V

Epilogue
In the last part of this dissertation, we conclude by summarizing our
contributions and outlining future research directions.

197

CHAPTER 11

Conclusion

Chapter Outline
11.1 Summary . 199

11.2 Future Work . 201

11.3 Outlook . 204

11.1 Summary

Edge Computing is an emerging paradigm that brings storage and processing capa-
bilities closer to the ever-increasing number of (mobile) end devices, sensors, and
actuators. It therefore introduces a new middle-tier between end devices and dis-
tant Cloud Computing infrastructures. This brings several advantages compared
to the state-of-the-art Cloud Computing paradigm, such as a reduced latency or
bandwidth savings in the core network. This in turn enables upcoming applica-
tions, such as augmented reality, IoT data analytics, and collaborative gaming. One
major challenge towards the widespread availability of Edge Computing is the de-
ployment of elastic, proximate computing resources. For two reasons, we envision
such resources to be deployed in urban areas first: (i) the proposed applications for
edge computing typically involve densely interconnected people and things, and
(ii) both Cloud Computing providers and operators of cellular networks are in the
process of deploying general-purpose hardware in or close to the access network,
naturally preferring regions with a large number of potential customers.

In this thesis, we have presented contributions in the field of Urban Edge Comput-
ing, i.e., Edge Computing in an urban environment. This environment is character-
ized by its heterogeneity in different aspects, which we have considered throughout
the contributions of this thesis. First, Edge Computing features a variety of devices,
data sources, and consumers. Those are connected using different wireless access

199

200 Chapter 11. Conclusion

technologies (e.g., WiFi or cellular networks). Second, a variety of applications re-
quire computation and storage capabilities, each with individual requirements, e.g.,
with regards to processing latency or data locality. Third, the infrastructure for Edge
Computing, i.e., the resources that will be used to host data and computations, are
highly heterogeneous in their capacity, cost, and ownership.

This thesis consisted of four main parts that made contributions to the under-
standing, planning, deployment, and operation of Edge Computing. Our focus on
urban Edge Computing is especially emphasized by Part II, in which we consider
urban infrastructures, such as street lamps, as infrastructural resources for Edge
Computing deployments. The contributions presented in the other parts of this
thesis are relevant beyond urban infrastructures.

We now conclude this thesis by summarizing the contributions made in those
parts.

PART I | The first part provided a detailed background and analysis of the state
of the art in Edge Computing. We provided a taxonomy (Chapter 2) of Edge
Computing and analyzed its characteristics (Chapter 3). In Chapter 4, we per-
formed a systematic survey of use cases for Edge Computing and proposed a
classification scheme for Edge Computing applications. Part I therefore con-
tributes to the general understanding of the field of Edge Computing, refines
its definition in an urban context, and highlights important (future) use cases.

PART II | In the second part, we examined the infrastructures in an urban environ-
ment on which we can place cloudlets—small-scale proximate data centers—
to offer Edge Computing resources to (mobile) users. In Chapter 5, we per-
formed a systematic analysis of the coverage that can be achieved using the
existing access point infrastructure in a city, while Chapter 6 proposed a place-
ment strategy for heterogeneous cloudlets on those access points. This part
hence provided insights for the design and planning of the physical infra-
structure (in terms of hardware and communication capabilities) for Edge
Computing in an urban environment.

PART III | Part III focused on the actual execution of computations at the edge. To
realize this, Chapter 7 proposed an Edge Computing framework that is based
on computation onloading through a microservice store. The framework is an
alternative approach to state-of-the-art offloading approaches, in which the
offloadable parts of the applications are either pre-provisioned on the edge
nodes or transferred from the client device to the surrogate. Furthermore, the
reuse of microservice instances at runtime allows for an efficient use of edge
resources. We have shown how our approach is beneficial in terms of reduced
end-to-end latency and battery savings for the client device. The contributions
in this part lay the basis for the efficient execution of application parts at the
edge.

PART IV | Lastly, Part IV presented strategies and adaptations to make runtime
decisions in an Urban Edge Computing system. In Chapter 8, we proposed
an approach for the scalable placement of operators, i.e., functional parts of
applications. Given the complexity of the problem, we suggested placement
heuristics that reduce the solving time of the problem, while introducing only
a small optimality gap. The reduction in solving time in practice leads to a
faster provisioning of services for users, increasing the quality of experience

11.2. Future Work 201

and allowing for fast reconfigurations of placements. Chapter 9 in turn in-
vestigated the placement of data. More specifically, we proposed the concept
of context-aware micro storage at the edge of the network. We realized this
concept and developed vStore, an open-source framework targeted at mo-
bile users. Our concept makes rule-based storage decisions, leverages prox-
imate storage nodes to save core network bandwidth, and allows for cross-
application sharing of data. Chapter 10 revised the previously introduced
concept of microservices by making them adaptable at runtime. We intro-
duced the notion of service variants that can dynamically be selected to trade
off execution time and quality of results. Given the different latency require-
ments of applications and varying computing resources in Edge Computing,
this tradeoff allows to adapt an Edge Computing execution system to those
characteristics. Furthermore, the concept of service variants allows to shrink
the gap in resource elasticity between Edge Computing and Cloud Computing.

The contributions made in the individual parts can stand for themselves and
should be viewed independently. However, in a broader context, parts II–IV can be
considered building blocks for an overall Urban Edge Computing system. Part II
provides the substrate on which a distributed Edge Computing runtime (Part III)
operates. The runtime in turn relies on mechanisms presented in Part IV for its
decision-making (e.g., where to place data and carry out computations).

11.2 Future Work

This thesis made distinctive improvements in the field of Edge Computing. We can,
however, imagine several remaining obstacles that hinder the widespread availabil-
ity of Edge Computing in urban spaces as envisioned in this thesis. In this chapter,
we outline some open questions and possible future research directions.

11.2.1 Discovery

On several occasions, we have highlighted the opportunistic and highly distributed
nature of Urban Edge Computing, in which users leverage various storage and com-
puting resources owned by different stakeholders in their surroundings. One man-
ifestation of this aspect is that surrogates will be spread throughout the entire net-
work, inside different Internet autonomous systems (AS) [HB96] that are owned
and operated by different stakeholders. This in itself poses challenges, e.g, with
regards to interoperability and revenue models (see Section 11.2.3). Even if we
assume a future standardized Edge Computing infrastructure with roaming and
accounting models across stakeholders, the challenge of discovering available sur-
rogates remains.

Service discovery is a well-established problem in the domains of pervasive com-
puting and web services and, hence, various solutions have been proposed [Hel02;
ZMN05]. For different reasons they are not applicable in an Edge Computing envi-
ronment, where we require a loose coupling between users and surrogates in order
to achieve a seamless migration of services (e.g., because of user mobility). In
Edge Computing, we need discovery mechanisms that work on a global scale and
yet remain scalable. Broadcast protocols and approaches that rely on centralized
databases clearly do not fulfill these requirements. Several proposed approaches in

202 Chapter 11. Conclusion

the context of Edge Computing or IoT also rely on centralized approaches for the dis-
covery [Bha+16; Che+18b] or assume that all resources for computing are known
a priori [Xio+18; Cap+18]. Approaches that create overlays, e.g., through DHTs1

[Ged+17; TVM18], suffer from topology mismatch, i.e., the overlay topology does
not accurately represent the properties of the underlying network. Consequently,
those approaches cannot make guarantees on the resulting latency—a crucial factor
for many Edge Computing applications.

In conclusion, the scalable discovery of federated resources remains challeng-
ing. In a recent contribution [Ged+20], we proposed to jointly use on-path and
off-path for the discovery in federated Fog Computing environments. We argue
that the techniques presented there can be applied to an Urban Edge Computing
environment, where we also have highly distributed resources in different admin-
istrative domains. The discovery mechanism combined DNS-based discovery (us-
ing the NAPTR resource records) with the announcement of computing resources
through custom BGP community strings. Figure 11.1 shows the results with vary-
ing percentages of fog sites. The latency reduction can be seen from Figure 11.1(a)
(comparing the latency of using only cloud resources with using fog resources as de-
termined by the different proposed discovery methods). From our measurements,
we could also observe that the latency does not correlate with the hop count (see
Figure 11.1(b)). It remains to be investigated if this also applies to Edge Comput-
ing, where resources are often (co-)located at the wireless gateway. Furthermore,
future work should investigate the efficiency with regards to the discovery time and
the caching and dissemination of discovery results.

(a) CDF of the Latency (b) CDF of the AS Hop Count

FIGURE 11.1: RESULTS OF COMBINED DISCOVERY METHODS (FIGURE TAKEN FROM

[GED+20])

11.2.2 Security, Privacy, and Trust

Distributing data and computations over a network naturally incurs challenges with
respect to security, privacy, and trust. Some of these challenges are similar to those
in Cloud Computing, while others specifically arise because of the characteristics of
Edge Computing.

1Distributed Hash Tables

11.2. Future Work 203

Mainly due to the high (geographic) distribution of resources, Edge Computing
increases the likelihood of physical attacks on the infrastructure. Not only a few
data centers, but a multitude of edge sites need to be secured. These edge sites are
sometimes located in unguarded places, such as roadside units or street lamps, mak-
ing them susceptible to theft and sabotage. Hence, ensuring the physical integrity
of edge sites remains challenging.

Aside from the physical security of edge sites, securing the execution environ-
ment is another crucial factor in both Edge Computing and Cloud Computing. Edge
Computing typically makes use of lightweight virtualization technologies (see Sec-
tion 3.5.2). The security aspect of those different virtualization technologies is
subject to discussion within the research community [Man+17; CMD16]. Other
challenges include securing the users’ data and network security [YQL15]. As an
example for the latter, Stojmenovic et al. [Sto+16] describe a stealthy man-in-the-
middle attack in a Fog Computing scenario. Roman et al. [RLM18] survey further
security threats and challenges. Following the aftermath of a successful attack,
Wang et al. [WUS15] discuss future challenges in forensics for Fog Computing.

Users of Edge Computing deployments have to trust the execution environment.
In contrast to Cloud Computing, this execution environment might span over mul-
tiple administrative domains, including devices that are privately owned (see Sec-
tion 3.3). Trust can encompass multiple aspects. First, edge nodes should not reveal
privacy-sensitive information. Second, if we envision the deployment of an Edge
Computing system as described in Chapter 7, we need to guarantee the security
and integrity of the services provided, especially if those are shared between mul-
tiple applications and the user has no control over which service will be invoked.
Furthermore, users should be able to trust the correctness of the computation. Few
initial works in this direction exist. For example, Ruan et al. [RDU18] propose a
trust management framework to assess trust for computations and devices in an
MEC-IoT environment. Zhang et al. [Zha+18c] analyze the data security and pri-
vacy threats in Edge Computing. Others have focused on these issues solely in the
context of the IoT [Vas+15; Per+15].

11.2.3 Business Models

Unlike for current Cloud Computing offerings, in Edge Computing it remains un-
clear what the predominant business models will be. In their review about the past
research on cyber foraging, Balan and Flin [BF17] raise the question of who should
provide surrogates for offloading, naming application providers, users, and third-
party infrastructure providers as possible candidates. Aijaz et al. [AAA13] shed
light on the business perspective of data offloading from the point of view of device
manufacturers, service providers, and hotspot operators. Others have argued that
Edge Computing needs the same flexible pay-as-you-go services models as Cloud
Computing [Ahm+17].

Edge Computing as we have envisioned it throughout this thesis is dynamic and
must be carried out in cooperative ways, e.g., mobile users must switch to other
cloudlets. Hence, to realize the full potential of Edge Computing, different stake-
holders and competitors must work together (e.g., to regulate data transit and en-
abling handover of users and services). Ideally, users should be able to seamlessly
migrate their data and computations independent of who owns the underlying infra-
structure. Besides new business models and technical standards, this also requires
novel accounting mechanisms [Rez+18]. We believe this is one of the main reasons

204 Chapter 11. Conclusion

that no widespread infrastructure for Urban Edge Computing is available today.
If we also consider privately owned devices for Edge Computing, the question of

business models shifts to incentive mechanisms. Previous works in this aspect have
focused on sharing the access network, e.g., sharing one’s broadband connection
via WiFi [Shi+15; MPP10]. Sharing the additional resources available at or colo-
cated with home gateways could be a next step. Some recent works have begun
to investigate incentive mechanisms for offloading in Edge Computing [Zen+18;
Liu+17] but those are mainly theoretical results that still are to be validated with
practical studies.

11.3 Outlook

Although Edge Computing is not ubiquitously and openly present today, novel ap-
plications such as mobile augmented reality and assisted driving will drive the need
for low-latency processing over fast wireless connections in the near future, espe-
cially when those applications work cooperatively.

We are just beginning to see how infrastructure is changing to support such ap-
plications. Novel communication standards such as 5G are being deployed, offering
unprecedented wireless bandwidth and ultra-low latency connectivity for mobile
devices. At the same time, the computing resources at the edge change and now
include more general-purpose, virtualized computing hardware, resembling the in-
frastructure found in the Cloud Computing environment. Owners of these resources
(e.g., mobile network operators) therefore can leverage this flexibility to offer addi-
tional services, e.g., general-purpose computing for edge applications. Established
Cloud Computing providers are also offering new services for proximate comput-
ing resources (e.g., Amazon’s lambda@edge2 or Microsoft’s announcement of Azure
Edge Zones3) in an attempt to enter the emerging Edge Computing market. Both of
these trends—enhanced wireless access technologies and more proximate general-
purpose computing resources— lay important technological groundworks for the
practical adoption of Edge Computing.

In the 2019 edition4 of their “Hype Cycle for Emerging Technologies”, Gartner
assessed edge analytics at the “peak of inflated expectations”. How deep the drop
from this peak will be before Edge Computing reaches the “plateau of productiv-
ity” will depend on a number of factors. Some of those remain open questions,
especially w.r.t. business models (see Section 11.2.3) and compatibility between
different Edge Computing providers, while this dissertation contributed solutions
w.r.t. technical questions for Edge Computing.

2https://aws.amazon.com/lambda/edge/ (accessed: 2020-06-12)
3https://docs.microsoft.com/en-us/azure/networking/edge-zones-overview (accessed:

2020-06-12)
4https://www.gartner.com/en/documents/3956015/hype-cycle-for-emerging-technologies-2019

(accessed: 2020-06-11)

Bibliography

[AAA13] Adnan Aijaz, Hamid Aghvami, and Mojdeh Amani. “A survey on mo-
bile data offloading: technical and business perspectives”. In: IEEE
Wireless Communnications 20.2 (2013), pp. 104–112.

[Aaz+16] M. Aazam, M. St-Hilaire, C. Lung, and I. Lambadaris. “Cloud-based
smart waste management for smart cities”. In: Proc. of the 2016 IEEE
21st International Workshop on Computer Aided Modelling and Design
of Communication Links and Networks (CAMAD). 2016, pp. 188–193.

[Aba+] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi. “En-
abling High-Quality Untethered Virtual Reality”. In: Proc. of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pp. 531–544.

[Aba+15] Omid Abari, Deepak Vasisht, Dina Katabi, and Anantha Chan-
drakasan. “Caraoke: An E-Toll Transponder Network for Smart
Cities”. In: Proc. of the 2015 ACM Conference on Special Interest
Group on Data Communication (SIGCOMM). 2015, pp. 297–310.

[Abb+18] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. “Mobile
Edge Computing: A Survey”. In: IEEE Internet of Things Journal 5.1
(2018), pp. 450–465.

[Abd+16] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati. “Network
function virtualization in 5G”. In: IEEE Communications Magazine
54.4 (2016), pp. 84–91.

[Abo+99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies,
Mark Smith, and Pete Steggles. “Towards a Better Understanding of
Context and Context-Awareness”. In: Proc. of the First International
Symposium on Handheld and Ubiquitous Computing (HUC). 1999,
pp. 304–307.

[AD14] H. Ahlehagh and S. Dey. “Video-Aware Scheduling and Caching in
the Radio Access Network”. In: IEEE/ACM Transactions on Networking
22.5 (2014), pp. 1444–1462.

205

206 Bibliography

[ADH18] Nurzaman Ahmed, Debashis De, and Iftekhar Hussain. “Internet of
Things (IoT) for Smart Precision Agriculture and Farming in Rural
Areas”. In: IEEE Internet of Things Journal 5.6 (2018), pp. 4890–4899.

[AG10] Alvaro Alesanco and Jose García. “Clinical Assessment of Wireless
ECG Transmission in Real-Time Cardiac Telemonitoring”. In: IEEE
Transactions on Information Technology in Biomedicine 14 (2010),
pp. 1144–1152.

[Agr+16] Ankur Agrawal, Jungwook Choi, Kailash Gopalakrishnan, Suyog
Gupta, Ravi Nair, Jinwook Oh, Daniel A. Prener, Sunil Shukla, Vi-
jayalakshmi Srinivasan, and Zehra Sura. “Approximate computing:
Challenges and opportunities”. In: Proc. of the IEEE International
Conference on Rebooting Computing (ICRC). 2016, pp. 1–8.

[Agu+10] Trevor R. Agus, Clara Suied, Simon J. Thorpe, and Daniel Pressnitzer.
“Characteristics of human voice processing”. In: Proc. of the Interna-
tional Symposium on Circuits and Systems (ISCAS). 2010, pp. 509–
512.

[AH14] M. Aazam and E. Huh. “Fog Computing and Smart Gateway Based
Communication for Cloud of Things”. In: Proc. of the 2014 Inter-
national Conference on Future Internet of Things and Cloud. 2014,
pp. 464–470.

[AH15] M. Aazam and E. Huh. “E-HAMC: Leveraging Fog computing for
emergency alert service”. In: Proc. of the 2015 IEEE International
Conference on Pervasive Computing and Communication Workshops
(PerCom Workshops). 2015, pp. 518–523.

[Ahm+17] E. Ahmed, A. Ahmed, I. Yaqoob, J. Shuja, A. Gani, M. Imran, and M.
Shoaib. “Bringing Computation Closer toward the User Network: Is
Edge Computing the Solution?” In: IEEE Communications Magazine
55.11 (2017), pp. 138–144.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of
Things: A survey”. In: Computer Networks 54.15 (2010), pp. 2787–
2805.

[AKL18] Haider A. F. Almurib, Thulasiraman Nandha Kumar, and Fabrizio
Lombardi. “Approximate DCT Image Compression Using Inex-
act Computing”. In: IEEE Transactions on Computers 67.2 (2018),
pp. 149–159.

[Ala+10] Firat Alagöz, André Calero Valdez, Wiktoria Wilkowska, Martina
Ziefle, Stefan Dorner, and Andreas Holzinger. “From Cloud Comput-
ing to Mobile Internet, from User Focus to Culture and Hedonism -
The Crucible of Mobile Health Care and Wellness Applications”. In:
Proc. of the 5th International Conference on Pervasive Computing and
Applications (ICPCA). 2010, pp. 38–45.

[Ala+18] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen.
“Orchestration of Microservices for IoT Using Docker and Edge Com-
puting”. In: IEEE Communications Magazine 56.9 (2018), pp. 118–
123.

Bibliography 207

[AlF+15] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash. “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications”. In: IEEE Communications Surveys &
Tutorials 17.4 (2015), pp. 2347–2376.

[Alr+17] A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng. “Fog Computing for
the Internet of Things: Security and Privacy Issues”. In: IEEE Internet
Computing 21.2 (2017), pp. 34–42.

[Alt+16] Qutaibah Althebyan, Qussai Yaseen, Yaser Jararweh, and Mahmoud
Al-Ayyoub. “Cloud support for large scale e-healthcare systems”. In:
Annales des Télécommunications 71.9-10 (2016), pp. 503–515.

[AMM15] Sereen Althaher, Pierluigi Mancarella, and Joseph Mutale. “Auto-
mated demand response from home energy management system
under dynamic pricing and power and comfort constraints”. In: IEEE
Transactions on Smart Grid 6.4 (2015), pp. 1874–1883.

[Ana+17] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha. “Real-Time Video Analytics: The Killer
App for Edge Computing”. In: Computer 50.10 (2017), pp. 58–67.

[App+10] David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon
Lee, and K. K. Ramakrishnan. “Optimal Content Placement for a
Large-scale VoD System”. In: Proc. of the 2010 ACM Conference on
Emerging Networking Experiments (CoNEXT). 2010, 4:1–4:12.

[AS13] Sameer Alawnah and Assim Sagahyroon. “Modeling Smartphones
Power”. In: Proc. of Eurocon. 2013, pp. 369–374.

[AS16] Aymen El Amraoui and Kaouthar Sethom. “Cloudlet Softwarization
for Pervasive Healthcare”. In: Proc. of the 30th International Confer-
ence on Advanced Information Networking and Applications (AINA)
Workshops. 2016, pp. 628–632.

[ASH15] Nazanin Aminzadeh, Zohreh Sanaei, and Siti Hafizah Ab Hamid.
“Mobile storage augmentation in mobile cloud computing: Taxon-
omy, approaches, and open issues”. In: Simulation Modelling Practice
and Theory 50 (2015), pp. 96–108.

[Awa+19] K. S. Awaisi, A. Abbas, M. Zareei, H. A. Khattak, M. U. Shahid Khan,
M. Ali, I. Ud Din, and S. Shah. “Towards a Fog Enabled Efficient Car
Parking Architecture”. In: IEEE Access 7 (2019), pp. 159100–159111.

[AXS17] Raef Abdallah, Lanyu Xu, and Weisong Shi. “Lessons and experiences
of a DIY smart home”. In: Proc. of the Workshop on Smart Internet of
Things. SmartIoT ’17. 2017, 4:1–4:6.

[AZH18] Mohammad Aazam, Sherali Zeadally, and Khaled A Harras. “Deploy-
ing fog computing in industrial internet of things and industry 4.0”.
In: Transactions on Industrial Informatics 14.10 (2018), pp. 4674–
4682.

[Azi+17] Iman Azimi, Arman Anzanpour, Amir M. Rahmani, Tapio Pahikkala,
Marco Levorato, Pasi Liljeberg, and Nikil D. Dutt. “HiCH: Hierarchical
Fog-Assisted Computing Architecture for Healthcare IoT”. In: ACM
Transactions on Embedded Computing Systems 16.5 (2017), 174:1–
174:20.

208 Bibliography

[AZM15] T. Anagnostopoulos, A. Zaslavsky, and A. Medvedev. “Robust waste
collection exploiting cost efficiency of IoT potentiality in Smart
Cities”. In: Proc. of the 2015 International Conference on Recent Ad-
vances in Internet of Things (RIoT). 2015, pp. 1–6.

[Azu97] Ronald Azuma. “A Survey of Augmented Reality”. In: Presence 6.4
(1997), pp. 355–385.

[Baj+15] A. Bajpai, V. Jilla, V. N. Tiwari, S. M. Venkatesan, and R. Narayanan.
“Quantifiable fitness tracking using wearable devices”. In: Proc. of
the 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC). 2015, pp. 1633–1637.

[Bal+02] Rajesh Krishna Balan, Jason Flinn, Mahadev Satyanarayanan,
Shafeeq Sinnamohideen, and Hen-I Yang. “The case for cyber forag-
ing”. In: Proc. of the 10th ACM SIGOPS European Workshop. 2002,
pp. 87–92.

[Bal+07] Rajesh Krishna Balan, Darren Gergle, Mahadev Satyanarayanan, and
James Herbsleb. “Simplifying Cyber Foraging for Mobile Devices”. In:
Proc. of the 5th International Conference on Mobile Systems, Applica-
tions and Services. MobiSys ’07. 2007, pp. 272–285.

[Bal+17] Ioana Baldini, Paul C. Castro, Kerry Shih-Ping Chang, Perry Cheng,
Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Ro-
dric Rabbah, Aleksander Slominski, and Philippe Suter. “Serverless
Computing: Current Trends and Open Problems”. In: Research Ad-
vances in Cloud Computing. 2017, pp. 1–20.

[Ban+14] B. Bangerter, S. Talwar, R. Arefi, and K. Stewart. “Networks and de-
vices for the 5G era”. In: IEEE Communications Magazine 52.2 (2014),
pp. 90–96.

[Bas+03] Harpal S. Bassali, Krishnanand M. Kamath, Rajendraprasad B.
Hosamani, and Lixin Gao. “Hierarchy-aware algorithms for CDN
proxy placement in the Internet”. In: Computer Communications 26.3
(2003), pp. 251–263.

[Baz+13] Sobir Bazarbayev, Matti A. Hiltunen, Kaustubh R. Joshi, William H.
Sanders, and Richard D. Schlichting. “PSCloud: a durable context-
aware personal storage cloud”. In: Proc. of the 9th Workshop on Hot
Topics in Dependable Systems (HotDep). 2013, 9:1–9:6.

[BB14] M. Bani Younes and A. Boukerche. “An Intelligent Traffic Light
scheduling algorithm through VANETs”. In: Proc. of the 39th An-
nual IEEE Conference on Local Computer Networks Workshops. 2014,
pp. 637–642.

[BBD14] E. Bastug, M. Bennis, and M. Debbah. “Living on the edge: The role of
proactive caching in 5G wireless networks”. In: IEEE Communications
Magazine 52.8 (2014), pp. 82–89.

[BCZ97] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. “An
architecture for active networking”. In: Proc. of the 7th IFIP Interna-
tional Conference on High Performance Networking (HPN’97). 1997,
pp. 265–279.

Bibliography 209

[BD07] Danilo Beuche and Mark Dalgarno. “Software product line engineer-
ing with feature models”. In: Overload Journal 78 (2007), pp. 5–8.

[BD17] Arani Bhattacharya and Pradipta De. “A survey of adaptation tech-
niques in computation offloading”. In: Journal of Network and Com-
puter Applications 78 (2017), pp. 97–115.

[Bec+14] Michael Till Beck, Martin Werner, Sebastian Feld, and Thomas Schim-
per. “Mobile Edge Computing: A Taxonomy”. In: Proc. of the Sixth In-
ternational Conference on Advances in Future Internet (AFIN). 2014,
pp. 48–54.

[Ben14] Juan Benet. “IPFS - Content Addressed, Versioned, P2P File System”.
In: CoRR abs/1407.3561 (2014), pp. 1–11.

[BF17] Rajesh Krishna Balan and Jason Flinn. “Cyber Foraging: Fifteen Years
Later”. In: IEEE Pervasive Computing 16.3 (2017), pp. 24–30.

[BG17] Tayebeh Bahreini and Daniel Grosu. “Efficient placement of multi-
component applications in edge computing systems”. In: Proc. of the
2nd ACM/IEEE Symposium on Edge Computing (SEC). 2017, 5:1–5:11.

[BGG19] Azzedine Boukerche, Shichao Guan, and Robson E. De Grande. “Sus-
tainable Offloading in Mobile Cloud Computing: Algorithmic Design
and Implementation”. In: ACM Computing Surveys 52.1 (2019), 11:1–
11:37.

[BGT16] B. Butzin, F. Golatowski, and D. Timmermann. “Microservices ap-
proach for the internet of things”. In: Proc. of the 2016 IEEE 21st Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA). 2016, pp. 1–6.

[Bha+15a] Ketan Bhardwaj, Pragya Agarwal, Ada Gavrilovska, Karsten Schwan,
and Adam Allred. “AppFlux: Taming App Delivery via Streaming”.
In: Proc. of USENIX Conference on Timely Results in Operating Systems
(TRIOS). Oct. 2015, pp. 1–14.

[Bha+15b] Ketan Bhardwaj, Pragya Agrawal, Ada Gavrilovska, and Karsten
Schwan. “AppSachet: Distributed App Delivery from the Edge Cloud”.
In: Proc. of the 7th International Conference on Mobile Computing, Ap-
plications and Services (MobiCASE). 2015, pp. 89–106.

[Bha+16] K. Bhardwaj, M. Shih, P. Agarwal, A. Gavrilovska, T. Kim, and K.
Schwan. “Fast, Scalable and Secure Onloading of Edge Functions
Using AirBox”. In: Proc. of the 2016 IEEE/ACM Symposium on Edge
Computing (SEC). 2016, pp. 14–27.

[BHJ16] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Microser-
vices Architecture Enables DevOps: Migration to a Cloud-Native Ar-
chitecture”. In: IEEE Software 33.3 (2016), pp. 42–52.

[Bi+18] Yuanguo Bi, Guangjie Han, Chuan Lin, Qingxu Deng, Lei Guo, and
Fuliang Li. “Mobility Support for Fog Computing: An SDN Approach”.
In: IEEE Communications Magazine 56.5 (2018), pp. 53–59.

[BI14] Benjamin Billet and Valérie Issarny. “From Task Graphs to Concrete
Actions: A New Task Mapping Algorithm for the Future Internet of
Things”. In: Proc. of the 11th IEEE International Conference on Mobile
Ad Hoc and Sensor Systems (MASS). 2014, pp. 470–478.

210 Bibliography

[BKM09] Aaron Bangor, Philip Kortum, and James Miller. “Determining What
Individual SUS Scores Mean: Adding an Adjective Rating Scale”. In:
Journal of Usability Studies 4.3 (2009), pp. 114–123.

[BLS17] Sultan Basudan, Xiaodong Lin, and Karthik Sankaranarayanan. “A
Privacy-Preserving Vehicular Crowdsensing-Based Road Surface Con-
dition Monitoring System Using Fog Computing”. In: IEEE Internet of
Things Journal 4.3 (2017), pp. 772–782.

[BMM14] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. “Uncer-
tain <T>: A First-order Type for Uncertain Data”. In: Proc. of the
19th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). Ed. by Rajeev Bal-
asubramonian, Al Davis, and Sarita V. Adve. 2014, pp. 51–66.

[BMV10] Aruna Balasubramanian, Ratul Mahajan, and Arun Venkataramani.
“Augmenting Mobile 3G Using WiFi”. In: Proc. of the 8th International
Conference on Mobile Systems, Applications, and Services. MobiSys ’10.
2010, pp. 209–222.

[BOE17] Ahmet Cihat Baktir, Atay Ozgovde, and Cem Ersoy. “How Can Edge
Computing Benefit From Software-Defined Networking: A Survey,
Use Cases, and Future Directions”. In: IEEE Communications Surveys
and Tutorials 19.4 (2017), pp. 2359–2391.

[Boh+15] Steven Bohez, Jaron Couvreur, Bart Dhoedt, and Pieter Simoens.
“Cloudlet-based Large-scale 3D Reconstruction Using Real-time Data
from Mobile Depth Cameras”. In: Proc. of the 6th International Work-
shop on Mobile Cloud Computing (MCS). 2015, pp. 8–14.

[Bon+12] Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, and Sateesh Addepalli.
“Fog computing and its role in the internet of things”. In: Proc. of the
1st Workshop on Mobile Cloud Computing (MCC). 2012, pp. 13–16.

[Bra+17a] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris Chatzopoulos,
and Pan Hui. “Future Networking Challenges: The Case of Mobile
Augmented Reality”. In: Proc. of the 37th IEEE International Con-
ference on Distributed Computing Systems (ICDCS). 2017, pp. 1796–
1807.

[Bra+17b] P. J. Braun, S. Pandi, R. Schmoll, and F. H. P. Fitzek. “On the study
and deployment of mobile edge cloud for tactile Internet using a 5G
gaming application”. In: Proc. of the 2017 14th IEEE Annual Consumer
Communications Networking Conference (CCNC). 2017, pp. 154-1-59.

[Bre+19] Martin Breitbach, Dominik Schäfer, Janick Edinger, and Christian
Becker. “Context-Aware Data and Task Placement in Edge Computing
Environments”. In: Proc. of the 2019 IEEE International Conference on
Pervasive Computing and Communications (PerCom). 2019, pp. 1–10.

[Bro96] John Brooke. “SUS-A quick and dirty usability scale”. In: Usability
evaluation in industry 189.194 (1996), pp. 4–7.

[BS13] Eyuphan Bulut and Boleslaw K. Szymanski. “WiFi access point de-
ployment for efficient mobile data offloading”. In: Mobile Computing
and Communications Review 17.1 (2013), pp. 71–78.

Bibliography 211

[BS16] E. Bulut and B. Szymanski. “Rethinking offloading WiFi access point
deployment from user perspective”. In: Proc. of the 12th IEEE Interna-
tional Conference on Wireless and Mobile Computing (WiMob). 2016,
pp. 1–6.

[BSC10] David Benavides, Sergio Segura, and Antonio Ruiz Cortés. “Auto-
mated analysis of feature models 20 years later: A literature review”.
In: Information Systems 35.6 (2010), pp. 615–636.

[Bur+15] V. Burger, M. Seufert, F. Kaup, M. Wichtlhuber, D. Hausheer, and P.
Tran-Gia. “Impact of WiFi offloading on video streaming QoE in ur-
ban environments”. In: Proc- of the International Conference on Com-
munication Workshops (ICC Workshops). 2015, pp. 1717–1722.

[BZ11] Nicola Bui and Michele Zorzi. “Health care applications: a solution
based on the internet of things”. In: Proc. of the 4th International Sym-
posium on Applied Sciences in Biomedical and Communication Tech-
nologies (ISABEL). 2011, 131:1–131:5.

[BZ17] Paolo Bellavista and Alessandro Zanni. “Feasibility of Fog Computing
Deployment based on Docker Containerization over RaspberryPi”. In:
Proc. of the 18th International Conference on Distributed Computing
and Networking (ICDCN). 2017, pp. 1–10.

[CAG08] V. Chandrasekhar, J. G. Andrews, and A. Gatherer. “Femtocell net-
works: a survey”. In: IEEE Communications Magazine 46.9 (2008),
pp. 59–67.

[Cai+18] W. Cai, F. Chi, X. Wang, and V. C. M. Leung. “Toward Multiplayer
Cooperative Cloud Gaming”. In: IEEE Cloud Computing 5.5 (2018),
pp. 70–80.

[Cao+15] Yu Cao, Songqing Chen, Peng Hou, and Donald Brown. “FAST: A fog
computing assisted distributed analytics system to monitor fall for
stroke mitigation”. In: Proc. of the 10th IEEE International Conference
on Networking, Architecture and Storage (NAS). 2015, pp. 2–11.

[Cap+18] Justin Cappos, Matthew Hemmings, Rick McGeer, Albert Rafetseder,
and Glenn Ricart. “EdgeNet: A Global Cloud That Spreads by Local
Action”. In: Proc. of the IEEE/ACM Symposium on Edge Computing
(SEC). 2018, pp. 359–360.

[Car+12] Ben W. Carabelli, Andreas Benzing, Frank Dürr, Boris Koldehofe,
Kurt Rothermel, Georg S. Seyboth, Rainer Blind, Mathias Bürger,
and Frank Allgöwer. “Exact convex formulations of network-oriented
optimal operator placement”. In: Proc. of the 51th IEEE Conference on
Decision and Control (CDC). 2012, pp. 3777–3782.

[Car+15] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli. “On QoS-aware
scheduling of data stream applications over fog computing infrastruc-
tures”. In: Proc. of the 2015 IEEE Symposium on Computers and Com-
munication (ISCC). 2015, pp. 271–276.

[Car+16] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo
Nardelli. “Optimal operator placement for distributed stream process-
ing applications”. In: Proceedings of the 10th ACM International Con-
ference on Distributed and Event-based Systems (DEBS). 2016, pp. 69–
80.

212 Bibliography

[Car+17] Marcel Caria, Jasmin Schudrowitz, Admela Jukan, and Nicole Kem-
per. “Smart farm computing systems for animal welfare monitoring”.
In: Proc. of the 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO).
2017, pp. 152–157.

[Cas14] Marco Casini. “Internet of things for Energy efficiency of buildings”.
In: International Scientific Journal Architecture and Engineering 2.1
(2014), pp. 24–28.

[CCK18] Eduardo Cuervo, Krishna Chintalapudi, and Manikanta Kotaru. “Cre-
ating the perfect Illusion: What will it take to Create Life-Like Virtual
Reality Headsets?” In: Proc. of the 19th International Workshop on
Mobile Computing Systems & Applications (HotMobile). 2018, pp. 7–
12.

[CCL14] W. Cai, M. Chen, and V. C. M. Leung. “Toward Gaming as a Service”.
In: IEEE Internet Computing 18.3 (2014), pp. 12–18.

[CCP19] Claudio Cicconetti, Marco Conti, and Andrea Passarella. “Low-latency
Distributed Computation Offloading for Pervasive Environments”. In:
Proc. of the 2019 IEEE International Conference on Pervasive Computing
and Communications (PerCom). 2019, pp. 1–10.

[CDO17] Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. “FADES: Fine-
Grained Edge Offloading with Unikernels”. In: Proc. of the Workshop
on Hot Topics in Container Networking and Networked Systems (Hot-
ConNet). 2017, pp. 36–41.

[CDO19] Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. “Edge Chaining
Framework for Black Ice Road Fingerprinting”. In: Proc. of the 2nd
International Workshop on Edge Systems, Analytics and Networking
(EdgeSys). 2019, pp. 42–47.

[CFB14] Francesco Calabrese, Laura Ferrari, and Vincent D. Blondel. “Urban
Sensing Using Mobile Phone Network Data: A Survey of Research”.
In: ACM Compututing Surveys 47.2 (2014), 25:1–25:20.

[Cha+14] Hyunseok Chang, Adiseshu Hari, Sarit Mukherjee, and T. V. Laksh-
man. “Bringing the cloud to the edge”. In: Proc. of the IEEE INFOCOM
Workshops. 2014, pp. 346–351.

[Cha+15] Amir Chaudhry, Jon Crowcroft, Heidi Howard, Anil Madhavapeddy,
Richard Mortier, Hamed Haddadi, and Derek McAuley. “Personal
Data: Thinking Inside the Box”. In: Proc. of the 5th Decennial Aarhus
Conference on Critical Alternatives. CA ’15. 2015, pp. 29–32.

[Cha+16] David Chaum, Farid Javani, Aniket Kate, Anna Krasnova, Joeri de
Ruiter, Alan T Sherman, and D Das. “cMix: Anonymization by high-
performance scalable mixing”. In: Proc. of USENIX Security. 2016,
pp. 1–19.

[Che+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald
Carney, Ugur Cetintemel, Ying Xing, and Stanley B. Zdonik. “Scalable
Distributed Stream Processing”. In: Proc. of the First Biennial Confer-
ence on Innovative Data Systems Research (CIDR). 2003, pp. 1–12.

Bibliography 213

[Che+16] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. “Efficient Multi-
User Computation Offloading for Mobile-Edge Cloud Computing”. In:
IEEE/ACM Transactions on Networking 24.5 (2016), pp. 2795–2808.

[Che+17a] Ning Chen, Yu Chen, Xinyue Ye, Haibin Ling, Sejun Song, and Chin-
Tser Huang. “Smart City Surveillance in Fog Computing”. In: Advances
in Mobile Cloud Computing and Big Data in the 5G Era. Ed. by Con-
standinos X. Mavromoustakis, George Mastorakis, and Ciprian Dobre.
Springer International Publishing, 2017, pp. 203–226.

[Che+17b] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos,
Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pil-
lai, Roberta L. Klatzky, Daniel P. Siewiorek, and Mahadev Satya-
narayanan. “An empirical study of latency in an emerging class of
edge computing applications for wearable cognitive assistance”. In:
Proc. of the Second ACM/IEEE Symposium on Edge Computing (SEC).
2017, 14:1–14:14.

[Che+18a] Chia-Yu Chen, Jungwook Choi, Kailash Gopalakrishnan, Viji Srini-
vasan, and Swagath Venkataramani. “Exploiting approximate com-
puting for deep learning acceleration”. In: Proc. of the 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 2018,
pp. 821–826.

[Che+18b] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Ki-
tazawa. “FogFlow: Easy Programming of IoT Services Over Cloud and
Edges for Smart Cities”. In: IEEE Internet of Things Journal 5.2 (2018),
pp. 696–707.

[Chi+13] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand
Raghunathan. “Analysis and characterization of inherent application
resilience for approximate computing”. In: Proc. of the 50th Annual
Design Automation Conference (DAC). 2013, 113:1–113:9.

[Cho+12] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosen-
berg. “The Brewing Storm in Cloud Gaming: A Measurement Study
on Cloud to End-user Latency”. In: Proc. of the 11th Annual Workshop
on Network and Systems Support for Games. NetGames ’12. 2012, 2:1–
2:6.

[Cho+16] Junguk Cho, Karthikeyan Sundaresan, Rajesh Mahindra, Jacobus Van
der Merwe, and Sampath Rangarajan. “ACACIA: Context-aware Edge
Computing for Continuous Interactive Applications over Mobile Net-
works”. In: Proc. of the 12th International on Conference on Emerging
Networking Experiments and Technologies (CoNEXT). 2016, pp. 375–
389.

[Chu+11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. “CloneCloud: elastic execution between mobile device
and cloud”. In: Proc. of the 6th European Conference on Computer Sys-
tems (EuroSys). 2011, pp. 301–314.

[Chu+13] Chit Chung, Dennis Egan, Ashish Jain, Nicholas Caruso, Colin Misner,
and Richard Wallace. “A Cloud-Based Mobile Computing Applications
Platform for First Responders”. In: Proc. of the 7th IEEE International
Symposium on Service-Oriented System (SOSE). 2013, pp. 503–508.

214 Bibliography

[CLK07] S. H. Chang, H. J. La, and S. D. Kim. “A Comprehensive Approach
to Service Adaptation”. In: Proc. of the IEEE International Conference
on Service-Oriented Computing and Applications (SOCA ’07). 2007,
pp. 191–198.

[CLP17] B. Confais, A. Lebre, and B. Parrein. “An Object Store Service for a
Fog/Edge Computing Infrastructure Based on IPFS and a Scale-Out
NAS”. In: Proc. of the 2017 IEEE 1st International Conference on Fog
and Edge Computing (ICFEC). 2017, pp. 41–50.

[CM12] Gianpaolo Cugola and Alessandro Margara. “Processing Flows of In-
formation: From Data Stream to Complex Event Processing”. In: ACM
Computing Surveys 44.3 (2012), 15:1–15:62.

[CM13] Gianpaolo Cugola and Alessandro Margara. “Deployment strate-
gies for distributed complex event processing”. In: Computing 95.2
(2013), pp. 129–156.

[CMD16] T. Combe, A. Martin, and R. Di Pietro. “To Docker or Not to Docker: A
Security Perspective”. In: IEEE Cloud Computing 3.5 (2016), pp. 54–
62.

[Coh+15] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz. “Near optimal place-
ment of virtual network functions”. In: Proc. of the 2015 IEEE Con-
ference on Computer Communications (INFOCOM). 2015, pp. 1346–
1354.

[CP15] Zhen Cao and Panagiotis Papadimitriou. “Collaborative content
caching in wireless edge with SDN”. In: Proc. of the 1st Workshop on
Content Caching and Delivery in Wireless Networks (CCDWN@CoNEXT).
2015, 6:1–6:7.

[CPS15] Alberto Ceselli, Marco Premoli, and Stefano Secci. “Cloudlet network
design optimization”. In: Proc. of the 14th IFIP Networking Conference.
2015, pp. 1–9.

[CS15] Luca Canzian and Mihaela van der Schaar. “Real-time stream min-
ing: online knowledge extraction using classifier networks”. In: IEEE
Network 29.5 (2015), pp. 10–16.

[Cue+10] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. “MAUI: making
smartphones last longer with code offload”. In: Proc. of the ACM In-
ternational Conference on Mobile Systems, Applications, and Services
(MobiSys). 2010, pp. 49–62.

[Cur+02] Francisco Curbera, Matthew J. Duftler, Rania Khalaf, William Nagy,
Nirmal Mukhi, and Sanjiva Weerawarana. “Unraveling the Web Ser-
vices Web: An Introduction to SOAP, WSDL, and UDDI”. In: IEEE In-
ternet Computing 6.2 (2002), pp. 86–93.

[CZZ13] Xuejun Cai, Shunliang Zhang, and Yunfei Zhang. “Economic analy-
sis of cache location in mobile network”. In: Proc. of the 2013 IEEE
Wireless Communications and Networking Conference (WCNC). 2013,
pp. 1243–1248.

Bibliography 215

[Dab+04] Frank Dabek, Russ Cox, M. Frans Kaashoek, and Robert Tappan Mor-
ris. “Vivaldi: A decentralized network coordinate system”. In: Proc. of
the ACM SIGCOMM 2004 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication. 2004, pp. 15–
26.

[Dav+16] Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and
Brandon Amos. “Privacy Mediators: Helping IoT Cross the Chasm”.
In: Proc. of the 17th International Workshop on Mobile Computing Sys-
tems and Applications. HotMobile ’16. 2016, pp. 39–44.

[DBH15] S. K. Datta, C. Bonnet, and J. Haerri. “Fog Computing architecture to
enable consumer centric Internet of Things services”. In: Proc. of the
2015 International Symposium on Consumer Electronics (ISCE). 2015,
pp. 1–2.

[Dey01] Anind K. Dey. “Understanding and Using Context”. In: Personal and
Ubiquitous Computing 5.1 (2001), pp. 4–7.

[Dez+12] Niloofar Dezfuli, Jochen Huber, Simon Olberding, and Max Mühlhäuser.
“CoStream: in-situ co-construction of shared experiences through
mobile video sharing during live events”. In: Proc. of the 2012 ACM
annual conference on Human Factors in Computing Systems Extended
Abstracts (CHI EA). 2012, pp. 2477–2482.

[DH15] Han Deng and I-Hong Hou. “Online scheduling for delayed mobile
offloading”. In: Proc. of the IEEE Conference on Computer Communi-
cations (INFOCOM). 2015, pp. 1867–1875.

[Dil+02] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl.
“Globally distributed content delivery”. In: IEEE Internet Computing
6.5 (2002), pp. 50–58.

[Dim+11] Savio Dimatteo, Pan Hui, Bo Han, and Victor O. K. Li. “Cellular Traffic
Offloading through WiFi Networks”. In: Proc. of the IEEE 8th Interna-
tional Conference on Mobile Adhoc and Sensor Systems (MASS). 2011,
pp. 192–201.

[DIN18] DIN. Integrated multi-functional Humble Lamppost (imHLa). Norm
DIN SPEC 91347. 2018.

[Don+11] Yuan Dong, Haiyang Zhu, Jinzhan Peng, Fang Wang, Michael P. Mes-
nier, Dawei Wang, and Sun C. Chan. “RFS: a network file system
for mobile devices and the cloud”. In: Operating Systems Review 45.1
(2011), pp. 101–111.

[Dra+17] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. “Mi-
croservices: Yesterday, Today, and Tomorrow”. In: Present and Ulterior
Software Engineering. 2017, pp. 195–216.

[Dra+18] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Maz-
zara, Ruslan Mustafin, and Larisa Safina. “Microservices: How To
Make Your Application Scale”. In: Proc. of the 11th International
Andrei P. Ershov Informatics Conference (PSI). 2018, pp. 95–104.

216 Bibliography

[Dro+17] Utsav Drolia, Katherine Guo, Jiaqi Tan, Rajeev Gandhi, and Priya
Narasimhan. “Cachier: Edge-Caching for Recognition Applications”.
In: Proc. of the 37th IEEE International Conference on Distributed Com-
puting Systems (ICDCS). 2017, pp. 276–286.

[Dur+15] Francisco Rodrigo Duro, Francisco Javier García Blas, Daniel Higuero,
Oscar Pérez, and Jesús Carretero. “CoSMiC: A hierarchical cloudlet-
based storage architecture for mobile clouds”. In: Simulation Mod-
elling Practice and Theory 50 (2015), pp. 3–19.

[Dut+17] Joy Dutta, Chandreyee Chowdhury, Sarbani Roy, Asif Iqbal Middya,
and Firoj Gazi. “Towards Smart City: Sensing Air Quality in City Based
on Opportunistic Crowd-sensing”. In: Proc. of the 18th International
Conference on Distributed Computing and Networking (ICDCN). ICDCN
’17. 2017, 42:1–42:6.

[Ebe+16] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolás Ser-
rano. “DevOps”. In: IEEE Software 33.3 (2016), pp. 94–100.

[Edi+17] Janick Edinger, Dominik Schäfer, Martin Breitbach, and Chris-
tian Becker. “Developing distributed computing applications with
Tasklets”. In: Proc. of the 2017 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Work-
shops). 2017, pp. 94–96.

[EFP10] Elias C. Efstathiou, Pantelis A. Frangoudis, and George C. Polyzos.
“Controlled Wi-Fi Sharing in Cities: A Decentralized Approach Rely-
ing on Indirect Reciprocity”. In: IEEE Transactions on Mobile Comput-
ing 9.8 (2010), pp. 1147–1160.

[EL16] R. Eidenbenz and T. Locher. “Task allocation for distributed stream
processing”. In: Proc. of the 35th Annual IEEE International Conference
on Computer Communications (INFOCOM). 2016, pp. 1–9.

[Elb+18] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler. “Toward Low-
Latency and Ultra-Reliable Virtual Reality”. In: IEEE Network 32.2
(2018), pp. 78–84.

[Eri13] Ericsson. “Ericsson Mobility Report”. In: (2013), pp. 1–28. URL:
https : / / metis2020 . com / res / docs / 2013 / ericsson -

mobility-report-june-2013.pdf.

[ERS16] Guy Even, Matthias Rost, and Stefan Schmid. “An Approximation Al-
gorithm for Path Computation and Function Placement in SDNs”. In:
Proc. of the 23rd International Colloquium on Structural Information
and Communication Complexity (SIROCCO). 2016, pp. 374–390.

[Esp+17] F. Esposito, A. Cvetkovski, T. Dargahi, and J. Pan. “Complete edge
function onloading for effective backend-driven cyber foraging”. In:
Proc. of the 2017 IEEE 13th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob). 2017,
pp. 1–8.

[Eug+03] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. “The many faces of publish/subscribe”. In: ACM Comput-
ing Surveys 35.2 (2003), pp. 114–131.

Bibliography 217

[EZB17] Ahmed Elmokashfi, Dong Zhou, and Džiugas Baltrünas. “Adding the
Next Nine: An Investigation of Mobile Broadband Networks Availabil-
ity”. In: Proc. of the 23rd Annual International Conference on Mobile
Computing and Networking (MobiCom). 2017, pp. 88–100.

[FA17] Qiang Fan and Nirwan Ansari. “Cost Aware cloudlet Placement for
big data processing at the edge”. In: Proc. of the IEEE International
Conference on Communications (ICC). 2017, pp. 1–6.

[Fas+07] Elena Fasolo, Michele Rossi, Jörg Widmer, and Michele Zorzi. “In-
network aggregation techniques for wireless sensor networks: A sur-
vey”. In: IEEE Wireless Communications 14.2 (2007), pp. 70–87.

[Fel+15] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. “An
updated performance comparison of virtual machines and Linux con-
tainers”. In: Proc. of the 2015 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS). 2015, pp. 171–
172.

[Fel+18] Patrick Felka, Artur Sterz, Katharina Keller, Bernd Freisleben, and
Oliver Hinz. “The Context Matters: Predicting the Number of In-game
Actions Using Traces of Mobile Augmented Reality Games”. In: Proc.
of the 17th International Conference on Mobile and Ubiquitous Multi-
media. MUM 2018. 2018, pp. 25–35.

[Fer+17] H. Fereidooni, T. Frassetto, M. Miettinen, A. Sadeghi, and M. Conti.
“Fitness Trackers: Fit for Health but Unfit for Security and Privacy”.
In: Proc. of the 2017 IEEE/ACM International Conference on Connected
Health: Applications, Systems and Engineering Technologies (CHASE).
2017, pp. 19–24.

[Fer+18] Francisco-Javier Ferrández-Pastor, Higinio Mora, Antonio Jimeno-
Morenilla, and Bruno Volckaert. “Deployment of IoT edge and fog
computing technologies to develop smart building services”. In:
Sustainability 10.11 (2018), pp. 1–23.

[Fia+17] Claudio Fiandrino, Andrea Capponi, Giuseppe Cacciatore, Dzmitry
Kliazovich, Ulrich Sorger, Pascal Bouvry, Burak Kantarci, Fabrizio
Granelli, and Stefano Giordano. “CrowdSenSim: a Simulation Plat-
form for Mobile Crowdsensing in Realistic Urban Environments”. In:
IEEE Access 5 (2017), pp. 3490–3503.

[FJ10] Gaojun Fan and Shiyao Jin. “Coverage Problem in Wireless Sensor
Network: A Survey”. In: Journal of Networks 5.9 (2010), pp. 1033–
1040.

[Flo+15] Huber Flores, Pan Hui, Sasu Tarkoma, Yong Li, Satish Narayana Sri-
rama, and Rajkumar Buyya. “Mobile code offloading: From concept
to practice and beyond”. In: IEEE Communications Magazine 53.3
(2015), pp. 80–88.

[FLR13] Niroshinie Fernando, Seng Wai Loke, and J. Wenny Rahayu. “Mobile
cloud computing: A survey”. In: Future Generation Computer Systems
29.1 (2013), pp. 84–106.

[Fow14] Martin Fowler. Microservices - a definition of this new architectural
term. https://martinfowler.com/articles/microservices.
html. Accessed: 2019-03-04. 2014.

218 Bibliography

[Fre+13] Sylvain Frey, Ada Diaconescu, David Menga, and Isabelle Demeure.
“A holonic control architecture for a heterogeneous multi-objective
smart micro-grid”. In: Proc. of the IEEE 7th International Conference
on Self-Adaptive and Self-Organizing Systems. 2013, pp. 21–30.

[Frö+16] Alexander Frömmgen, Jens Heuschkel, Patrick Jahnke, Fabio Cuozzo,
Immanuel Schweizer, Patrick Eugster, Max Mühlhäuser, and Alejan-
dro P. Buchmann. “Crowdsourcing Measurements of Mobile Network
Performance and Mobility During a Large Scale Event”. In: Proc. of the
17th International Passive and Active Measurement Conference (PAM).
2016, pp. 70–82.

[Fu+18] Jun-Song Fu, Yun Liu, Han-Chieh Chao, Bharat K Bhargava, and
Zhen-Jiang Zhang. “Secure data storage and searching for indus-
trial IoT by integrating fog computing and cloud computing”. In:
Transactions on Industrial Informatics 14.10 (2018), pp. 4519–4528.

[Gao+17] Mingze Gao, Qian Wang, Md Tanvir Arafin, Yongqiang Lyu, and Gang
Qu. “Approximate Computing for Low Power and Security in the In-
ternet of Things”. In: IEEE Computer 50.6 (2017), pp. 27–34.

[Gau+13] E. I. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, and R.
Rednic. “Edge Mining the Internet of Things”. In: IEEE Sensors Journal
13.10 (2013), pp. 3816–3825.

[GC04] Sachin Goyal and John Carter. “A Lightweight Secure Cyber Foraging
Infrastructure for Resource-Constrained Devices”. In: Proc. of the 6th
IEEE Workshop on Mobile Computing Systems and Applications (WM-
CSA). 2004, pp. 186–195.

[GD08] Amitabha Amitava Ghosh and Sajal K. Das. “Coverage and connec-
tivity issues in wireless sensor networks: A survey”. In: Pervasive and
Mobile Computing 4.3 (2008), pp. 303–334.

[Ged+17] Julien Gedeon, Christian Meurisch, Disha Bhat, Michael Stein, Lin
Wang, and Max Mühlhäuser. “Router-based Brokering for Surrogate
Discovery in Edge Computing”. In: Proc. of the International Con-
ference on Distributed Computing Systems Workshops (ICDCS Work-
shops). 2017, pp. 145–150.

[Ged+18a] Julien Gedeon, Jens Heuschkel, Lin Wang, and Max Mühlhäuser. “Fog
Computing: Current Research and Future Challenges”. In: Proc. of
1.GI/ITG KuVS Fachgespräche Fog Computing. 2018, pp. 1–4.

[Ged+18b] Julien Gedeon, Nicolás Himmelmann, Patrick Felka, Fabian Her-
rlich, Michael Stein, and Max Mühlhäuser. “vStore: A Context-Aware
Framework for Mobile Micro-Storage at the Edge”. In: Proc. of the In-
ternational Conference on Mobile Computing, Applications and Services
(MobiCASE). 2018, pp. 165–182.

[Ged+18c] Julien Gedeon, Jeff Krisztinkovics, Christian Meurisch, Michael Stein,
Lin Wang, and Max Mühlhäuser. “A Multi-Cloudlet Infrastructure for
Future Smart Cities: An Empirical Study”. In: Proc. of the 1st Interna-
tional Workshop on Edge Systems, Analytics and Networking (EdgeSys).
ACM. 2018, pp. 19–24.

Bibliography 219

[Ged+18d] Julien Gedeon, Michael Stein, Jeff Krisztinkovics, Patrick Felka,
Katharina Keller, Christian Meurisch, Lin Wang, and Max Mühlhäuser.
“From Cell Towers to Smart Street Lamps: Placing Cloudlets on
Existing Urban Infrastructures”. In: Proc. of the 2018 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE. 2018, pp. 187–202.

[Ged+18e] Julien Gedeon, Michael Stein, Lin Wang, and Max Mühlhäuser. “On
Scalable In-Network Operator Placement for Edge Computing”. In:
Proc. of the 27th International Conference on Computer Communica-
tion and Networks (ICCCN). IEEE. 2018, pp. 1–9.

[Ged+19a] Julien Gedeon, Florian Brandherm, Rolf Egert, Tim Grube, and Max
Mühlhäuser. “What the Fog? Edge Computing Revisited: Promises,
Applications and Future Challenges”. In: IEEE Access 7 (2019),
pp. 152847–152878.

[Ged+19b] Julien Gedeon, Martin Wagner, Jens Heuschkel, Lin Wang, and Max
Mühlhäuser. “A Microservice Store for Efficient Edge Offloading”. In:
Proc. of the IEEE Global Communications Conference (GLOBECOM).
2019, pp. 1–6.

[Ged+20] Julien Gedeon, Sebastian Zengerle, Sebastian Alles, Florian Brand-
herm, and Max Mühlhäuser. “Sunstone: Navigating the Way Through
the Fog”. In: Proc. of the International Conference on Fog and Edge
Computing (ICFEC). 2020, to appear.

[Ged17] Julien Gedeon. “Edge Computing via Dynamic In-network Process-
ing”. In: International Conference on Networked Systems (Netsys’17):
PhD Forum. 2017, pp. 1–2.

[GES08] Pawel Garbacki, Dick H. J. Epema, and Maarten van Steen. “Broker-
placement in latency-aware peer-to-peer networks”. In: Computer
Networks 52.8 (2008), pp. 1617–1633.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The
Google file system”. In: Proc. of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP). 2003, pp. 29–43.

[Gha+16] B. Ghazal, K. ElKhatib, K. Chahine, and M. Kherfan. “Smart traffic
light control system”. In: Proc. of the 2016 Third International Confer-
ence on Electrical, Electronics, Computer Engineering and their Appli-
cations (EECEA). 2016, pp. 140–145.

[Gho+19] Sara Gholami, Alireza Goli, Cor-Paul Bezemer, and Hamzeh Khazaei.
“A Framework for Satisfying the Performance Requirements of Con-
tainerized Software Systems Through Multi-Versioning”. In: Proc. of
the International Conference on Performance Engineering (ICPE). 2019,
pp. 1–11.

[Gia+15] Tuan Nguyen Gia, Mingzhe Jiang, Amir-Mohammad Rahmani, Tomi
Westerlund, Pasi Liljeberg, and Hannu Tenhunen. “Fog Computing in
Healthcare Internet of Things: A Case Study on ECG Feature Extrac-
tion”. In: Proc. of the 2015 IEEE International Conference on Computer
and Information Technology; Ubiquitous Computing and Communica-
tions; Dependable, Autonomic and Secure Computing; Pervasive Intelli-
gence and Computing. 2015, pp. 356–363.

220 Bibliography

[Gil16] James N Gilmore. “Everywear: The quantified self and wearable fit-
ness technologies”. In: New Media & Society 18.11 (2016), pp. 2524–
2539.

[GJM19] Georgia Gkioxari, Justin Johnson, and Jitendra Malik. “Mesh R-CNN”.
In: Proc. of the 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). 2019, pp. 9784–9794.

[Gol+19] Morteza Golkarifard, Ji Yang, Zhanpeng Huang, Ali Movaghar, and
Pan Hui. “Dandelion: A Unified Code Offloading System for Wearable
Computing”. In: IEEE Transactions on Mobile Computing 18.3 (2019),
pp. 546–559.

[Gor+12] Mark S. Gordon, Davoud Anoushe Jamshidi, Scott A. Mahlke, Zhuo-
qing Morley Mao, and Xu Chen. “COMET: Code Offload by Migrating
Execution Transparently”. In: Proc. of the 13 USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 2012, pp. 93–
106.

[Gov+14] Nithyashri Govindarajan, Yogesh Simmhan, Nitin Jamadagni, and
Prasant Misra. “Event Processing Across Edge and the Cloud for
Internet of Things Applications”. In: Proc. of the 20th International
Conference on Management of Data. COMAD ’14. 2014, pp. 101–104.

[GR18] Harshit Gupta and Umakishore Ramachandran. “FogStore: A Geo-
Distributed Key-Value Store Guaranteeing Low Latency for Strongly
Consistent Access”. In: Proc. of the 12th ACM International Conference
on Distributed and Event-based Systems. DEBS ’18. 2018, pp. 148–159.

[Gre+08] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Pa-
tel. “The cost of a cloud: research problems in data center networks”.
In: ACM SIGCOMM Computer Communication Review 39.1 (2008),
pp. 68–73.

[GS15] Julien Gedeon and Immanuel Schweizer. “Understanding Spatial and
Temporal Coverage in Participatory Sensor Networks”. In: Proc. of
the 40th IEEE Local Computer Networks Conference Workshops (LCN
Workshops). 2015, pp. 699–707.

[Gub+13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimu-
thu Palaniswami. “Internet of Things (IoT): A vision, architectural el-
ements, and future directions”. In: Future Generation Computer Sys-
tems 29.7 (2013), pp. 1645–1660.

[Guo+18] Peizhen Guo, Bo Hu, Rui Li, and Wenjun Hu. “FoggyCache: Cross-
Device Approximate Computation Reuse”. In: Proc. of the 24th An-
nual International Conference on Mobile Computing and Networking
(MobiCom). 2018, pp. 19–34.

[Gup+11] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghu-
nathan, and Kaushik Roy. “IMPACT: imprecise adders for low-power
approximate computing”. In: Proc. of the 2011 International Sympo-
sium on Low Power Electronics and Design (ISLPED). IEEE/ACM, 2011,
pp. 409–414.

Bibliography 221

[GXR18] Harshit Gupta, Zhuangdi Xu, and Umakishore Ramachandran.
“DataFog: Towards a Holistic Data Management Platform for the
IoT Age at the Network Edge”. In: Proc. of the USENIX Workshop on
Hot Topics in Edge Computing (HotEdge 18). 2018, pp. 1–6.

[GZG13] Lin Gu, Deze Zeng, and Song Guo. “Vehicular cloud computing: A
survey”. In: Proc. of the Global Communications Conference Workshops
(GLOBECOM Workshops). 2013, pp. 403–407.

[Ha+14] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan
Pillai, and Mahadev Satyanarayanan. “Towards Wearable Cognitive
Assistance”. In: Proc. of the 12th Annual International Conference on
Mobile Systems, Applications, and Services. MobiSys ’14. 2014, pp. 68–
81.

[HAB17] S. Hassan, N. Ali, and R. Bahsoon. “Microservice Ambients: An Archi-
tectural Meta-Modelling Approach for Microservice Granularity”. In:
Proc.of the 2017 IEEE International Conference on Software Architec-
ture (ICSA). 2017, pp. 1–10.

[Hal+08] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. “Dynamic Soft-
ware Product Lines”. In: Computer 41.4 (2008), pp. 93–95.

[Han+17] Dong Han, Ye Yan, Tao Shu, Liuqing Yang, and Shuguang Cui. “Cog-
nitive Context-Aware Distributed Storage Optimization in Mobile
Cloud Computing: A Stable Matching Based Approach”. In: Proc.
of the 37th IEEE International Conference on Distributed Computing
Systems (ICDCS). 2017, pp. 594–604.

[Hao+17] Pengzhan Hao, Yongshu Bai, Xin Zhang, and Yifan Zhang. “Edge-
courier: an edge-hosted personal service for low-bandwidth docu-
ment synchronization in mobile cloud storage services”. In: Proc. of
the Second ACM/IEEE Symposium on Edge Computing (SEC). 2017,
7:1–7:14.

[Has+18] Najmul Hassan, Saira Gillani, Ejaz Ahmed, Ibrar Yaqoob, and Muham-
mad Imran. “The Role of Edge Computing in Internet of Things”. In:
IEEE Communications Magazine 56.11 (2018), pp. 110–115.

[Hav11] Matti Haverila. “Mobile phone feature preferences, customer satis-
faction and repurchase intent among male users”. In: Australasian
Marketing Journal (AMJ) 19.4 (2011), pp. 238–246.

[Haw+14] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal. “NFV: state of the
art, challenges, and implementation in next generation mobile net-
works (vEPC)”. In: IEEE Network 28.6 (2014), pp. 18–26.

[HB16] Sara Hassan and Rami Bahsoon. “Microservices and Their Design
Trade-Offs: A Self-Adaptive Roadmap”. In: Proc. of the IEEE Interna-
tional Conference on Services Computing (SCC). 2016, pp. 813–818.

[HB96] J. Hawkinson and T. Bates. RFC1930: Guidelines for creation, selection,
and registration of an Autonomous System (AS). Internet Requests for
Comments. 1996. URL: https://www.rfc-editor.org/info/
rfc1930.

222 Bibliography

[Hec+18] Melanie Heck, Janick Edinger, Dominik Schäfer, and Christian
Becker. “IoT Applications in Fog and Edge Computing: Where Are We
and Where Are We Going?” In: Proc. of the 27th International Confer-
ence on Computer Communication and Networks (ICCCN) Workshops.
2018, pp. 1–6.

[Hel+19] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. “Serverless Computing: One Step Forward, Two Steps Back”.
In: Proc. of the 9th Biennial Conference on Innovative Data Systems
Research (CIDR). 2019.

[Hel02] S. Helal. “Standards for service discovery and delivery”. In: IEEE Per-
vasive Computing 1.3 (2002), pp. 95–100.

[Hen+16] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkatesh-
waran Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. “Serverless Computation with OpenLambda”. In:
Proc. of the 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 2016). 2016, pp. 1–7.

[Heo+14] Taewook Heo, Kwangsoo Kim, Hyunhak Kim, Changwon Lee, Jae
Hong Ryu, Youn Taik Leem, Jong Arm Jun, Chulsik Pyo, Seung-Mok
Yoo, and JeongGil Ko. “Escaping from ancient Rome! Applications
and challenges for designing smart cities”. In: Transactions on Emerg-
ing Telecommunications Technologies 25.1 (2014), pp. 109–119.

[Heu+17] Jens Heuschkel, Michael Stein, Lin Wang, and Max Mühlhäuser.
“Beyond the core: Enabling software-defined control at the network
edge”. In: Proc. of the 2017 International Conference on Networked
Systems (NetSys). 2017, pp. 1–6.

[Heu+19] Jens Heuschkel, Philipp Thomasberger, Julien Gedeon, and Max
Mühlhäuser. “VirtualStack: Green High Performance Network Pro-
tocol Processing Leveraging FPGAs”. In: Proc. of the IEEE Global
Communications Conference (GLOBECOM). 2019, pp. 1–6.

[Him17] Nicolás Himmelmann. “Context-Aware Virtual Storage Framework
for Mobile Devices”. Bachelor’s Thesis. Technische Universität Darm-
stadt, Department of Computer Science, 2017.

[Hir+13] Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and
Robert Grimm. “A catalog of stream processing optimizations”. In:
ACM Computing Surveys 46.4 (2013), 46:1–46:34.

[HK06] Robert Hirschfeld and Katsuya Kawamura. “Dynamic service adapta-
tion”. In: Software Practice and Experience 36.11-12 (2006), pp. 1115–
1131.

[HL08] H. Hartenstein and L. P. Laberteaux. “A tutorial survey on vehicular
ad hoc networks”. In: IEEE Communications Magazine 46.6 (2008),
pp. 164–171.

[HL16] Zijiang Hao and Qun Li. “Poster Abstract: EdgeStore: Integrating
Edge Computing into Cloud-Based Storage Systems”. In: Proc. of the
IEEE/ACM Symposium on Edge Computing (SEC). 2016, pp. 115–116.

Bibliography 223

[HO13] Jie Han and Michael Orshansky. “Approximate computing: An emerg-
ing paradigm for energy-efficient design”. In: Proc. of the 18th IEEE
European Test Symposium (ETS). 2013, pp. 1–6.

[Hon+13] Kirak Hong, David J. Lillethun, Umakishore Ramachandran, Beate
Ottenwälder, and Boris Koldehofe. “Mobile fog: a programming
model for large-scale applications on the internet of things”. In: Proc.
of the 2nd ACM Workshop on Mobile Cloud Computing (MCC). 2013,
pp. 15–20.

[Hou+16] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen. “Vehicular Fog
Computing: A Viewpoint of Vehicles as the Infrastructures”. In: IEEE
Transactions on Vehicular Technology 65.6 (2016), pp. 3860–3873.

[How+17] Shaun Howell, Yacine Rezgui, Jean-Laurent Hippolyte, Bejay Jayan,
and Haijiang Li. “Towards the next generation of smart grids: Se-
mantic and holonic multi-agent management of distributed energy
resources”. In: Renewable and Sustainable Energy Reviews 77 (2017),
pp. 193–214.

[HS02] Thomas Heimrich and Günther Specht. “Enhancing ECA Rules for Dis-
tributed Active Database Systems”. In: Proc. of the Web, Web-Services,
and Database Systems, NODe 2002 Web and Database-Related Work-
shops. Vol. 2593. Lecture Notes in Computer Science. 2002, pp. 199–
205.

[HT05] Chi-Fu Huang and Yu-Chee Tseng. “The Coverage Problem in a Wire-
less Sensor Network”. In: Mobile Networks and Applications 10.4
(2005), pp. 519–528.

[Hu+15a] Wenlu Hu, Brandon Amos, Zhuo Chen, Kiryong Ha, Wolfgang Richter,
Padmanabhan Pillai, Benjamin Gilbert, Jan Harkes, and Mahadev
Satyanarayanan. “The Case for Offload Shaping”. In: Proceedings of
the 16th International Workshop on Mobile Computing Systems and
Applications (HotMobile). 2015, pp. 51–56.

[Hu+15b] Y.C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young. “Mobile
Edge Computing: A key technology towards 5G”. In: ETSI Whitepaper
(2015), pp. 1–28.

[Hu+16] Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo
Chen, Padmanabhan Pillai, and Mahadev Satyanarayanan. “Quan-
tifying the Impact of Edge Computing on Mobile Applications”. In:
Proc. of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems (AP-
Sys). 2016, 5:1–5:8.

[Hu+17] Pengfei Hu, Huansheng Ning, Tie Qiu, Yanfei Zhang, and Xiong Luo.
“Fog Computing Based Face Identification and Resolution Scheme in
Internet of Things”. In: IEEE Transactions on Industrial Informatics
13.4 (2017), pp. 1910–1920.

[Hua+11] Y. Huang, Z. Luan, R. He, and D. Qian. “Operator Placement with QoS
Constraints for Distributed Stream Processing”. In: Proc. of the 7th In-
ternational Conference on Network and Service Management (CNSM).
2011, pp. 309–315.

224 Bibliography

[Hua+14] Chun-Ying Huang, Cheng-Hsin Hsu, De-Yu Chen, and Kuan-Ta Chen.
“Quantifying User Satisfaction in Mobile Cloud Games”. In: Proc. of
the Workshop on Mobile Video Delivery. MoViD’14. 2014, pp. 1–6.

[Hur04] Chris Hurley. WarDriving: drive, detect, defend: a guide to wireless se-
curity. Syngress Publishing, 2004.

[HV19] Cheol-Ho Hong and Blesson Varghese. “Resource Management in
Fog/Edge Computing: A Survey on Architectures, Infrastructure, and
Algorithms”. In: ACM Computing Surveys 52.5 (2019), 97:1–97:37.

[IBD15] Stepan Ivanov, Kriti Bhargava, and William Donnelly. “Precision
Farming: Sensor Analytics”. In: IEEE Intelligent Systems 30.4 (2015),
pp. 76–80.

[Jal+16] Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney
S. Tucker. “Fog Computing May Help to Save Energy in Cloud Com-
puting”. In: IEEE Journal on Selected Areas in Communications 34.5
(2016), pp. 1728–1739.

[Jam+18] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. “Mi-
croservices: The Journey So Far and Challenges Ahead”. In: IEEE Soft-
ware 35.3 (2018), pp. 24–35.

[Jar+03] Amit P. Jardosh, Elizabeth M. Belding-Royer, Kevin C. Almeroth, and
Subhash Suri. “Towards realistic mobility models for mobile ad hoc
networks”. In: Proc. of the Ninth Annual International Conference on
Mobile Computing and Networking (MOBICOM). Ed. by David B. John-
son, Anthony D. Joseph, and Nitin H. Vaidya. 2003, pp. 217–229.

[Jay+14] Prem Prakash Jayaraman, João Bártolo Gomes, Hai-Long Nguyen,
Zahraa Said Abdallah, Shonali Krishnaswamy, and Arkady B. Za-
slavsky. “CARDAP: A Scalable Energy-Efficient Context Aware Dis-
tributed Mobile Data Analytics Platform for the Fog”. In: Proc. Ad-
vances in Databases and Information Systems (ADBIS). 2014, pp. 192–
206.

[JCL17] M. Jia, J. Cao, and W. Liang. “Optimal Cloudlet Placement and User
to Cloudlet Allocation in Wireless Metropolitan Area Networks”. In:
IEEE Transactions on Cloud Computing 5.4 (2017), pp. 725–737.

[Ji+12] C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li. “Big Data Processing in
Cloud Computing Environments”. In: Proc. of the 2012 12th Inter-
national Symposium on Pervasive Systems, Algorithms and Networks.
2012, pp. 17–23.

[Jia+18] G. Jia, G. Han, A. Li, and J. Du. “SSL: Smart Street Lamp Based on
Fog Computing for Smarter Cities”. In: IEEE Transactions on Industrial
Informatics 14.11 (2018), pp. 4995–5004.

[Jia+19] Congfeng Jiang, Xiaolan Cheng, Honghao Gao, Xin Zhou, and Jian
Wan. “Toward Computation Offloading in Edge Computing: A Sur-
vey”. In: IEEE Access 7 (2019), pp. 131543–131558.

[JLR13] Aleksandar Jovicic, Junyi Li, and Tom Richardson. “Visible light com-
munication: opportunities, challenges and the path to market”. In:
IEEE Communications Magazine 51.12 (2013), pp. 26–32.

Bibliography 225

[Jon+17] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. “Occupy the Cloud: Distributed Computing for the
99%”. In: Proc. of the 2017 Symposium on Cloud Computing. SoCC
’17. ACM, 2017, pp. 445–451.

[JSK18a] S. Jeong, O. Simeone, and J. Kang. “Mobile Edge Computing via
a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path
Planning”. In: IEEE Transactions on Vehicular Technology 67.3 (2018),
pp. 2049–2063.

[JSK18b] Seongah Jeong, Osvaldo Simeone, and Joonhyuk Kang. “Mobile Edge
Computing via a UAV-Mounted Cloudlet: Optimization of Bit Alloca-
tion and Path Planning”. In: IEEE Transactions on Vehicular Technology
67.3 (2018), pp. 2049–2063.

[JV01] Kamal Jain and Vijay V. Vazirani. “Approximation algorithms for
metric facility location and k-Median problems using the primal-dual
schema and Lagrangian relaxation”. In: Journal of the ACM 48.2
(2001), pp. 274–296.

[KAB13] Ayat Khairy, Hany H. Ammar, and Reem Bahgat. “Smartphone En-
ergizer: Extending Smartphone’s battery life with smart offloading”.
In: Proc. of the 9th International Wireless Communications and Mobile
Computing Conference (IWCMC). 2013, pp. 329–336.

[Kad+14] K. Kadir, M. K. Kamaruddin, H. Nasir, S. I. Safie, and Z. A. K. Bakti.
“A comparative study between LBP and Haar-like features for Face
Detection using OpenCV”. In: Proc. of the 4th International Confer-
ence on Engineering Technology and Technopreneuship (ICE2T). 2014,
pp. 335–339.

[Käm+14] T. Kämäräinen, M. Siekkinen, Y. Xiao, and A. Ylä-Jääski. “Towards
pervasive and mobile gaming with distributed cloud infrastructure”.
In: Proc. of the 2014 13th Annual Workshop on Network and Systems
Support for Games. 2014, pp. 1–6.

[Kan+19] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob
Ahn, Jason Mars, and Lingjia Tang. “GrandSLAm: Guaranteeing SLAs
for Jobs in Microservices Execution Frameworks”. In: Proc. of the 14th
EuroSys Conference. 2019, 34:1–34:16.

[KB10] Mads Darø Kristensen and Niels Olof Bouvin. “Scheduling and devel-
opment support in the Scavenger cyber foraging system”. In: Pervasive
and Mobile Computing 6.6 (2010), pp. 677–692.

[Kem+10] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri E. Bal.
“Cuckoo: A Computation Offloading Framework for Smartphones”.
In: Proc. of the 2nd International Conference on Mobile Computing,
Applications and Services (MobiCASE). 2010, pp. 59–79.

[KJP15] A. Krylovskiy, M. Jahn, and E. Patti. “Designing a Smart City Internet
of Things Platform with Microservice Architecture”. In: Proc. of the
2015 3rd International Conference on Future Internet of Things and
Cloud. 2015, pp. 25–30.

[KL10] Karthik Kumar and Yung-Hsiang Lu. “Cloud Computing for Mobile
Users: Can Offloading Computation Save Energy?” In: IEEE Computer
43.4 (2010), pp. 51–56.

226 Bibliography

[Kli+18] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfefferle, and Animesh Trivedi. “Understanding Ephemeral Storage
for Serverless Analytics”. In: Proc. of the 2018 USENIX Annual Techni-
cal Conference (USENIX ATC). 2018, pp. 789–794.

[KLT16] H. Kang, M. Le, and S. Tao. “Container and Microservice Driven De-
sign for Cloud Infrastructure DevOps”. In: Proc. of the 2016 IEEE In-
ternational Conference on Cloud Engineering (IC2E). 2016, pp. 202–
211.

[Kon+06] Woralak Kongdenfha, Régis Saint-Paul, Boualem Benatallah, and
Fabio Casati. “An Aspect-Oriented Framework for Service Adapta-
tion”. In: Proc. of the 4th International Conference on Service-Oriented
Computing (ICSOC). 2006, pp. 15–26.

[Kos+12] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen
Zhang. “ThinkAir: Dynamic resource allocation and parallel execu-
tion in the cloud for mobile code offloading”. In: Proc. of the IEEE
Conference on Computer Communications (INFOCOM). 2012, pp. 945–
953.

[Kra+17] F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma. “Fog Com-
puting in Healthcare–A Review and Discussion”. In: IEEE Access 5
(2017), pp. 9206–9222.

[Kre+15] Diego Kreutz, Fernando M. V. Ramos, Paulo Jorge Esteves Veríssimo,
Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
“Software-Defined Networking: A Comprehensive Survey”. In: Pro-
ceedings of the IEEE 103.1 (2015), pp. 14–76.

[Kri19] Jeff Krisztinkovics. “Cloudlet-Abdeckung im urbanan Raum”. Bache-
lor’s Thesis. Technische Universität Darmstadt, Department of Com-
puter Science, 2019.

[Kum+13] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat K. Bhargava.
“A Survey of Computation Offloading for Mobile Systems”. In: Mobile
Networks and Applications 18.1 (2013), pp. 129–140.

[KYK12] Dejan Kovachev, Tian Yu, and Ralf Klamma. “Adaptive Computation
Offloading from Mobile Devices into the Cloud”. In: Proc. of the 10th
IEEE International Symposium on Parallel and Distributed Processing
with Applications (ISPA). 2012, pp. 784–791.

[Lai+17] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. “Fu-
rion: Engineering High-Quality Immersive Virtual Reality on Today’s
Mobile Devices”. In: Proc. of the 23rd Annual International Conference
on Mobile Computing and Networking. MobiCom ’17. 2017, pp. 409–
421.

[LC11] Changlei Liu and Guohong Cao. “Spatial-Temporal Coverage Opti-
mization in Wireless Sensor Networks”. In: IEEE Transactions on Mo-
bile Computing 10.4 (2011), pp. 465–478.

[Lee+13] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. “Mobile Data Offloading:
How Much Can WiFi Deliver?” In: IEEE/ACM Transactions on Net-
working 21.2 (2013), pp. 536–550.

Bibliography 227

[Lee+16] Eun-Kyu Lee, Mario Gerla, Giovanni Pau, Uichin Lee, and Jae-Han
Lim. “Internet of Vehicles: From intelligent grid to autonomous cars
and vehicular fogs”. In: International Journal of Distributed Sensor
Networks 12.9 (2016), pp. 1–14.

[Lew+14] G. Lewis, S. Echeverría, S. Simanta, B. Bradshaw, and J. Root. “Tac-
tical Cloudlets: Moving Cloud Computing to the Edge”. In: Proc. of
the 2014 IEEE Military Communications Conference. 2014, pp. 1440–
1446.

[LGS17] Prasanth Lade, Rumi Ghosh, and Soundar Srinivasan. “Manufactur-
ing analytics and industrial internet of things”. In: Intelligent Systems
32.3 (2017), pp. 74–79.

[LH18] Qiang Liu and Tao Han. “DARE: Dynamic Adaptive Mobile Aug-
mented Reality with Edge Computing”. In: Proc. of the 2018 IEEE
26th International Conference on Network Protocols (ICNP). 2018,
pp. 1–11.

[Li+11] M. Li, W. Cheng, K. Liu, Y. He, X. Li, and X. Liao. “Sweep Coverage with
Mobile Sensors”. In: IEEE Transactions on Mobile Computing 10.11
(2011), pp. 1534–1545.

[Li+15] Jiwei Li, Zhe Peng, Bin Xiao, and Yu Hua. “Make smartphones last
a day: Pre-processing based computer vision application offloading”.
In: Proc. of the 12th Annual IEEE International Conference on Sensing,
Communication (SECON). 2015, pp. 462–470.

[Li+16a] D. Li, T. Salonidis, N. V. Desai, and M. C. Chuah. “DeepCham: Col-
laborative Edge-Mediated Adaptive Deep Learning for Mobile Object
Recognition”. In: Proc. of the 2016 IEEE/ACM Symposium on Edge
Computing (SEC). 2016, pp. 64–76.

[Li+16b] Hongxing Li, Guochu Shou, Yihong Hu, and Zhigang Guo. “Mobile
Edge Computing: Progress and Challenges”. In: Proc. of the 4th IEEE
International Conference on Mobile Cloud Computing, Services, and En-
gineering (MobileCloud). 2016, pp. 83–84.

[Li+18] Chao Li, Yushu Xue, Jing Wang, Weigong Zhang, and Tao Li. “Edge-
Oriented Computing Paradigms: A Survey on Architecture Design
and System Management”. In: ACM Computing Surveys 51.2 (2018),
39:1–39:34.

[Lia+11] L. Liao, W. Chen, C. Zhang, L. Zhang, D. Xuan, and W. Jia. “Two Birds
With One Stone: Wireless Access Point Deployment for Both Coverage
and Localization”. In: IEEE Transactions on Vehicular Technology 60.5
(2011), pp. 2239–2252.

[Lia+18] Konstantinos Liakos, Patrizia Busato, Dimitrios Moshou, Simon Pear-
son, and Dionysis Bochtis. “Machine Learning in Agriculture: A Re-
view”. In: Sensors 18.8 (2018), pp. 1–29.

[Liu+08] Benyuan Liu, Olivier Dousse, Jie Wang, and Anwar Saipulla. “Strong
Barrier Coverage of Wireless Sensor Networks”. In: Proc. of the 9th
ACM International Symposium on Mobile Ad Hoc Networking and Com-
puting. MobiHoc. 2008, pp. 411–420.

228 Bibliography

[Liu+17] Yang Liu, Changqiao Xu, Yufeng Zhan, Zhixin Liu, Jianfeng Guan, and
Hongke Zhang. “Incentive mechanism for computation offloading us-
ing edge computing: A Stackelberg game approach”. In: Computer
Networks 129 (2017), pp. 399–409.

[Liu+18] Liangkai Liu, Xingzhou Zhang, Mu Qiao, and Weisong Shi. “Safe-
ShareRide: Edge-Based Attack Detection in Ridesharing Services”. In:
Proc. of the 2018 IEEE/ACM Symposium on Edge Computing (SEC).
2018, pp. 17–29.

[LLS08] Geetika T. Lakshmanan, Ying Li, and Rob Strom. “Placement strate-
gies for internet-scale data stream systems”. In: IEEE Internet Com-
puting 12.6 (2008), pp. 50–60.

[LMB17] Ivan Lujic, Vincenzo De Maio, and Ivona Brandic. “Efficient Edge Stor-
age Management Based on Near Real-Time Forecasts”. In: Proc. of the
1st IEEE International Conference on Fog and Edge Computing (ICFEC).
2017, pp. 21–30.

[Loc+08] Christian Lochert, Björn Scheuermann, Christian Wewetzer, Andreas
Lübke, and Martin Mauve. “Data Aggregation and Roadside Unit
Placement for a VANET Traffic Information System”. In: Proc. of the
5th International Workshop on Vehicular Ad Hoc Networks (VANET).
2008, pp. 58–65.

[LQB18] Peng Liu, Bozhao Qi, and Suman Banerjee. “EdgeEye: An edge service
framework for real-time intelligent video analytics”. In: Proc. of the
1st International Workshop on Edge Systems, Analytics and Networking
(EdgeSys). 2018, pp. 1–6.

[LR17] Maroš Lacinák and Jozef Ristvej. “Smart City, Safety and Security”.
In: Procedia Engineering 192 (2017), pp. 522–527.

[LS17] Yuhua Lin and Haiying Shen. “CloudFog: Leveraging Fog to Extend
Cloud Gaming for Thin-Client MMOG with High Quality of Service”.
In: IEEE Transactions on Parallel and Distributes Systems 28.2 (2017),
pp. 431–445.

[Lua+16] Tom H Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi We, and Limin
Sun. “A view of fog computing from networking perspective”. In:
CoRR abs/1602.01509 (2016).

[Lui+15] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary.
“Piecing together the NFV provisioning puzzle: Efficient placement
and chaining of virtual network functions”. In: Proc. of the IFIP/IEEE
International Symposium on Integrated Network Management (IM).
2015, pp. 98–106.

[LWB16] Peng Liu, Dale Willis, and Suman Banerjee. “ParaDrop: Enabling
Lightweight Multi-tenancy at the Network’s Extreme Edge”. In: Proc.
of the IEEE/ACM Symposium on Edge Computing (SEC). 2016, pp. 1–
13.

[LWX01] Zhiyuan Li, Cheng Wang, and Rong Xu. “Computation offloading to
save energy on handheld devices: a partition scheme”. In: Proc. of the
2001 International Conference on Compilers, Architectures and Synthe-
sis for Embedded Systems (CASES). 2001, pp. 238–246.

Bibliography 229

[LY18] Chun-Cheng Lin and Jhih-Wun Yang. “Cost-efficient deployment of
fog computing systems at logistics centers in industry 4.0”. In: Trans-
actions on Industrial Informatics 14.10 (2018), pp. 4603–4611.

[LYS16] Jiayi Liu, Qinghai Yang, and Gwendal Simon. “Optimal and Practical
Algorithms for Implementing Wireless CDN Based on Base Stations”.
In: Proc. of the IEEE 83rd Vehicular Technology Conference (VTC). 2016,
pp. 1–5.

[LZC18] En Li, Zhi Zhou, and Xu Chen. “Edge Intelligence: On-Demand Deep
Learning Model Co-Inference with Device-Edge Synergy”. In: Proc. of
the 2018 Workshop on Mobile Edge Communications. MECOMM’18.
2018, pp. 31–36.

[Ma+17] Longjie Ma, Jigang Wu, Long Chen, and Zhusong Liu. “Fast algorithms
for capacitated cloudlet placements”. In: Proc. of the 21st IEEE Inter-
national Conference on Computer Supported Cooperative Work in De-
sign (CSCWD). 2017, pp. 439–444.

[MA10] Raymond Mulligan and Habib M. Ammari. “Coverage in Wireless
Sensor Networks: A Survey”. In: Network Protocols & Algorithms 2.2
(2010), pp. 27–53.

[Mad+13] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. “Unikernels: Library Operating Systems for the
Cloud”. In: Proc. of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS
’13. 2013, pp. 461–472.

[Mai+09] Nicolas Maisonneuve, Matthias Stevens, Maria E. Niessen, and Luc
Steels. “NoiseTube: Measuring and mapping noise pollution with mo-
bile phones”. In: Proc. of the 4th International ICSC Symposium. 2009,
pp. 215–228.

[Man+04] Katerina Mania, Bernard D. Adelstein, Stephen R. Ellis, and Michael
I. Hill. “Perceptual Sensitivity to Head Tracking Latency in Virtual
Environments with Varying Degrees of Scene Complexity”. In: Proc. of
the 1st Symposium on Applied Perception in Graphics and Visualization.
APGV ’04. 2004, pp. 39–47.

[Man+17] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. “My VM is Lighter (and Safer) than your Container”. In: Proc.
of the 26th Symposium on Operating Systems Principles (SOSP). 2017,
pp. 218–233.

[Man+18] Johannes Manner, Martin EndreB, Tobias Heckel, and Guido Wirtz.
“Cold Start Influencing Factors in Function as a Service”. In: Proc.
of the 2018 IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC). 2018, pp. 181–188.

[Mao+17] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled
Ben Letaief. “A Survey on Mobile Edge Computing: The Communica-
tion Perspective”. In: IEEE Communications Surveys and Tutorials 19.4
(2017), pp. 2322–2358.

230 Bibliography

[Mar+14] João Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Andrei
Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici. “ClickOS
and the Art of Network Function Virtualization”. In: Proc. of the 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 2014, pp. 459–473.

[Mar+17] Eva Marín-Tordera, Xavier Masip-Bruin, Jordi Garcia Almiñana, Ad-
mela Jukan, Guang-Jie Ren, and Jiafeng Zhu. “Do we all really know
what a fog node is? Current trends towards an open definition”. In:
Computer Communications 109 (2017), pp. 117–130.

[Mar+19] Karola Marky, Andreas Weiß, Julien Gedeon, and Sebastian Günther.
“Mastering Music Instruments through Technology in Solo Learning
Sessions”. In: Proc. of the 7th Workshop on Interacting with Smart Ob-
jects (SmartObjects ’19). 2019, pp. 1–6.

[May+17] Ruben Mayer, Harshit Gupta, Enrique Saurez, and Umakishore Ra-
machandran. “FogStore: Toward a distributed data store for Fog com-
puting”. In: IEEE Fog World Congress. 2017, pp. 1–6.

[MAŽ18] M. Marjanović, A. Antonić, and I. P. Žarko. “Edge Computing Architec-
ture for Mobile Crowdsensing”. In: IEEE Access 6 (2018), pp. 10662–
10674.

[MB17] Pavel Mach and Zdenek Becvar. “Mobile Edge Computing: A Survey
on Architecture and Computation Offloading”. In: IEEE Communica-
tions Surveys and Tutorials 19.3 (2017), pp. 1628–1656.

[McG+02] John D. McGregor, Linda M. Northrop, Salah Jarrad, and Klaus Pohl.
“Guest Editors’ Introduction: Initiating Software Product Lines”. In:
IEEE Software 19.4 (2002), pp. 24–27.

[Med+15] Alexey Medvedev, Petr Fedchenkov, Arkady Zaslavsky, Theodoros
Anagnostopoulos, and Sergey Khoruzhnikov. “Waste Management as
an IoT-Enabled Service in Smart Cities”. In: Proc. Internet of Things,
Smart Spaces, and Next Generation Networks and Systems - 15th In-
ternational Conference, NEW2AN 2015, and 8th Conference, ruSMART
2015. 2015, pp. 104–115.

[Men+17] Hamid Menouar, Ismail Güvenç, Kemal Akkaya, A. Selcuk Uluagac,
Abdullah Kadri, and Adem Tuncer. “UAV-Enabled Intelligent Trans-
portation Systems for the Smart City: Applications and Challenges”.
In: IEEE Communications Magazine 55.3 (2017), pp. 22–28.

[Men+18] Nabor C. Mendonça, David Garlan, Bradley R. Schmerl, and Javier
Cámara. “Generality vs. reusability in architecture-based self-adaptation:
The case for self-adaptive microservices”. In: Proc. of the 12th Eu-
ropean Conference on Software Architecture: Companion Proceedings,
(ECSA). 2018, 18:1–18:6.

[Meu+15] Christian Meurisch, Alexander Seeliger, Benedikt Schmidt, Immanuel
Schweizer, Fabian Kaup, and Max Mühlhäuser. “Upgrading wireless
home routers for enabling large-scale deployment of cloudlets”. In:
Proc. of the 7th International Conference on Mobile Computing, Appli-
cations, and Services (MobiCASE). 2015, pp. 12–29.

Bibliography 231

[Meu+17a] Christian Meurisch, Julien Gedeon, Artur Gogel, The An Binh
Nguyen, Fabian Kaup, Florian Kohnhäuser, Lars Baumgärtner, Milan
Schmittner, and Max Mühlhäuser. “Temporal Coverage Analysis of
Router-Based Cloudlets Using Human Mobility Patterns”. In: Proc.
of the IEEE Global Communications Conference (GLOBECOM). IEEE.
2017, pp. 1–6.

[Meu+17b] Christian Meurisch, Julien Gedeon, The An Binh Nguyen, Fabian
Kaup, and Max Mühlhäuser. “Decision Support for Computational
Offloading by Probing Unknown Services”. In: Proc. of the 26th In-
ternational Conference on Computer Communication and Networks
(ICCCN). IEEE. 2017, pp. 1–9.

[Meu+17c] Christian Meurisch, The An Binh Nguyen, Julien Gedeon, Florian
Kohnhäuser, Milan Schmittner, Stefan Niemczyk, Stefan Wullkotte,
and Max Mühlhäuser. “Upgrading Wireless Home Routers as Emer-
gency Cloudlet and Secure DTN Communication Bridge”. In: Proc. of
the 26th International Conference on Computer Communication and
Networks (ICCCN). IEEE. 2017, pp. 1–2.

[MFH19] Cristina Mihale-Wilson, Patrick Felka, and Oliver Hinz. “The Bright
and the Dark Side of Smart Lights? The Protective Effect of Smart
City Infrastructures”. In: Proc. of the Hawaii International Conference
on System Sciences (HICSS). 2019, pp. 3345–3354.

[MFP20] Octavian Machidon, Tine Fajfar, and Veljko Pejović. “Implementing
Approximate Mobile Computing”. In: Proc. of the 2020 Workshop on
Approximate Computing Across the Stack (WAX). 2020, pp. 1–3.

[MHS17] Shaimaa M. Mohamed, Haitham S. Hamza, and Iman Aly Saroit.
“Coverage in mobile wireless sensor networks (M-WSN): A survey”.
In: Computer Communications 110 (2017), pp. 133–150.

[Mij+16] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R.
Boutaba. “Network Function Virtualization: State-of-the-Art and Re-
search Challenges”. In: IEEE Communications Surveys Tutorials 18.1
(2016), pp. 236–262.

[Mit16] Sparsh Mittal. “A Survey of Techniques for Approximate Computing”.
In: ACM Computing Surveys 48.4 (2016), 62:1–62:33.

[MJ16] Kianoosh Mokhtarian and Hans-Arno Jacobsen. “Coordinated caching
in planet-scale CDNs: Analysis of feasibility and benefits”. In: Proc. of
the IEEE Conference on Computer Communications (INFOCOM). 2016,
pp. 1–9.

[MK16] N. Mohan and J. Kangasharju. “Edge-Fog cloud: A distributed cloud
for Internet of Things computations”. In: Proc. of the 2016 Cloudifica-
tion of the Internet of Things (CIoT). 2016, pp. 1–6.

[MKB18a] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya.
“Fog Computing: A Taxonomy, Survey and Future Directions”. In: In-
ternet of Everything: Algorithms, Methodologies, Technologies and Per-
spectives. Ed. by Beniamino Di Martino, Kuan-Ching Li, Laurence T.
Yang, and Antonio Esposito. Springer Singapore, 2018, pp. 103–130.

232 Bibliography

[MKB18b] F. Messaoudi, A. Ksentini, and P. Bertin. “Toward a Mobile Gaming
Based-Computation Offloading”. In: Proc. of the 2018 IEEE Interna-
tional Conference on Communications (ICC). 2018, pp. 1–7.

[MN10] Antti P. Miettinen and Jukka K. Nurminen. “Energy Efficiency of Mo-
bile Clients in Cloud Computing”. In: Proc. of the 2nd USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud). 2010.

[Moh+11] Debabrata Mohapatra, Vinay K. Chippa, Anand Raghunathan, and
Kaushik Roy. “Design of voltage-scalable meta-functions for approxi-
mate computing”. In: Proc. of the 2011 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2011, pp. 950–955.

[Moh+18] Nitinder Mohan, Aleksandr Zavodovski, Pengyuan Zhou, and Jussi
Kangasharju. “Anveshak: Placing Edge Servers In The Wild”. In: Proc.
of the 2018 Workshop on Mobile Edge Communications (MECOMM).
2018, pp. 7–12.

[Mor+16] Richard Mortier, Jianxin Zhao, Jon Crowcroft, Liang Wang, Qi Li,
Hamed Haddadi, Yousef Amar, Andy Crabtree, James Colley, Tom
Lodge, et al. “Personal data management with the databox: What’s
inside the box?” In: Proc. of the 2016 ACM Workshop on Cloud-Assisted
Networking. 2016, pp. 49–54.

[Mor+17] Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes
Gomes, Caleb Phillips, and Eyal de Lara. “Cloudpath: a multi-tier
cloud computing framework”. In: Proc. of the Second ACM/IEEE
Symposium on Edge Computing (SEC). 2017, 20:1–20:13.

[Mor+18a] Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar,
and Jörg Ott. “Consolidate IoT Edge Computing with Lightweight Vir-
tualization”. In: IEEE Network 32.1 (2018), pp. 102–111.

[Mor+18b] Thierry Moreau, Joshua San Miguel, Mark Wyse, James Bornholt,
Armin Alaghi, Luis Ceze, Natalie D. Enright Jerger, and Adrian Samp-
son. “A Taxonomy of General Purpose Approximate Computing Tech-
niques”. In: Embedded Systems Letters 10.1 (2018), pp. 2–5.

[Mor+18c] Seyed Hossein Mortazavi, Bharath Balasubramanian, Eyal de Lara,
and Shankaranarayanan Puzhavakath Narayanan. “Pathstore, A Data
Storage Layer For The Edge”. In: Proc. of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. MobiSys ’18.
ACM, 2018, pp. 519–519.

[Mor+18d] Seyed Hossein Mortazavi, Bharath Balasubramanian, Eyal de Lara,
and Shankaranarayanan Puzhavakath Narayanan. “Toward Session
Consistency for the Edge”. In: Proc. of the USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 18). 2018, pp. 1–6.

[Mot+13] Vinícius F. S. Mota, Daniel F. Macedo, Yacine Ghamri-Doudane, and
José Marcos S. Nogueira. “On the feasibility of WiFi offloading in ur-
ban areas: The Paris case study”. In: Proc. of the IFIP Wireless Days
(WD). 2013, pp. 1–6.

[MPP10] Lefteris Mamatas, Ioannis Psaras, and George Pavlou. “Incentives and
Algorithms for Broadband Access Sharing”. In: Proc. of the 2010 ACM
SIGCOMM Workshop on Home Networks. HomeNets ’10. 2010, pp. 19–
24.

Bibliography 233

[MPZ10] X. Meng, V. Pappas, and L. Zhang. “Improving the Scalability of Data
Center Networks with Traffic-aware Virtual Machine Placement”. In:
Proc. of the 29th IEEE International Conference on Computer Commu-
nications (INFOCOM). 2010, pp. 1154–1162.

[MRD08] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. “Non-
Intrusive Monitoring and Service Adaptation for WS-BPEL”. In: Proc.
of the 17th International Conference on World Wide Web. WWW ’08.
2008, pp. 815–824.

[MRS19] Sumit Kumar Monga, Sheshadri K. R, and Yogesh Simmhan. “Elf-
Store: A Resilient Data Storage Service for Federated Edge and Fog
Resources”. In: Proc. of the 2019 IEEE International Conference on Web
Services (ICWS). 2019, pp. 336–345.

[MS13] Anil Madhavapeddy and David J. Scott. “Unikernels: Rise of the
Virtual Library Operating System”. In: Queue 11.11 (2013), 30:30–
30:44.

[MSC15] Thierry Moreau, Adrian Sampson, and Luis Ceze. “Approximate Com-
puting: Making Mobile Systems More Efficient”. In: IEEE Pervasive
Computing 14.2 (2015), pp. 9–13.

[MSM17] Hassnaa Moustafa, Eve M. Schooler, and Jessica McCarthy. “Reverse
CDN in Fog Computing: The lifecycle of video data in connected and
autonomous vehicles”. In: Proc. of the IEEE Fog World Congress (FWC).
2017, pp. 1–5.

[MTC17] D. Mazza, D. Tarchi, and G. E. Corazza. “A Unified Urban Mobile
Cloud Computing Offloading Mechanism for Smart Cities”. In: IEEE
Communications Magazine 55.3 (2017), pp. 30–37.

[Muk+17] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag, N. Choud-
hury, and V. Kumar. “Security and Privacy in Fog Computing: Chal-
lenges”. In: IEEE Access 5 (2017), pp. 19293–19304.

[Mül+17] Florian Müller, Sebastian Günther, Azita Hosseini Nejad, Niloofar
Dezfuli, Mohammadreza Khalilbeigi, and Max Mühlhäuser. “Cloud-
bits: supporting conversations through augmented zero-query search
visualization”. In: Proc. of the 5th Symposium on Spatial User Interac-
tion (SUI). 2017, pp. 30–38.

[Nan+17] Yucen Nan, Wei Li, Wei Bao, Flávia Coimbra Delicato, Paulo F. Pires,
Yong Dou, and Albert Y. Zomaya. “Adaptive Energy-Aware Compu-
tation Offloading for Cloud of Things Systems”. In: IEEE Access 5
(2017), pp. 23947–23957.

[Nar+19] Matteo Nardelli, Valeria Cardellini, Vincenzo Grassi, and Francesco
Lo Presti. “Efficient Operator Placement for Distributed Data Stream
Processing Applications”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 30.8 (2019), pp. 1753–1767.

[NB12] Ebisa Negeri and Nico Baken. “Architecting the smart grid as a ho-
larchy”. In: Proc. of the 1st International Conference on Smart Grids
and Green IT Systems. 2012, pp. 1–6.

[Ngu09] Thanh Nguyen. “Indexing PostGIS databases and spatial Query per-
formance evaluations”. In: International Journal of Geoinformatics 5
(2009), pp. 1–9.

234 Bibliography

[NS14] Dawn Nafus and Jamie Sherman. “Big data, big questions| this one
does not go up to 11: the quantified self movement as an alterna-
tive big data practice”. In: International journal of communication 8
(2014), pp. 1784–1794.

[Nun+15] Swaroop Nunna, Apostolos Kousaridas, Mohamed Ibrahim, Markus
Dillinger, Christoph Thuemmler, Hubertus Feussner, and Armin
Schneider. “Enabling Real-Time Context-Aware Collaboration through
5G and Mobile Edge Computing”. In: Proc. of the 2015 12th Interna-
tional Conference on Information Technology - New Generations. 2015,
pp. 601–605.

[Nuo+06] Teemu Nuortio, Jari Kytöjoki, Harri Niska, and Olli Bräysy. “Improved
route planning and scheduling of waste collection and transport”. In:
Expert Systems with Applications 30.2 (2006), pp. 223–232.

[OBL16] Gabriel Orsini, Dirk Bade, and Winfried Lamersdorf. “CloudAware: A
Context-Adaptive Middleware for Mobile Edge and Cloud Computing
Applications”. In: Proc. of the 2016 IEEE 1st International Workshops
on Foundations and Applications of Self* Systems (FAS*W). 2016,
pp. 216–221.

[Ola+12] Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and Derek
Rayside. “Modelling and Multi-Objective Optimization of Quality
Attributes in Variability-Rich Software”. In: Proc. of the 4th Inter-
national Workshop on Nonfunctional System Properties in Domain
Specific Modeling Languages. NFPinDSML ’12. 2012, pp. 1–6.

[Oye17] Emmanuel Oyekanlu. “Predictive edge computing for time series of
industrial IoT and large scale critical infrastructure based on open-
source software analytic of big data”. In: Proc. of the 2017 IEEE Inter-
national Conference on Big Data (Big Data). 2017, pp. 1663–1669.

[PA97] Daniel A. Peak and M. H. Azadmanesh. “Centralization/decentraliza-
tion cycles in computing: Market evidence”. In: Information & Man-
agement 31.6 (1997), pp. 303–317.

[Pah+16] Claus Pahl, Sven Helmer, Lorenzo Miori, Julian Sanin, and Brian Lee.
“A Container-Based Edge Cloud PaaS Architecture Based on Raspber-
ryPi Clusters”. In: Proc. of the 4th IEEE International Conference on Fu-
ture Internet of Things and Cloud Workshops (FiCloud). 2016, pp. 117–
124.

[Pan+13a] Gang Pan, Guande Qi, Wangsheng Zhang, Shijian Li, Zhaohui Wu,
and Laurence Tianruo Yang. “Trace Analysis and Mining for Smart
Cities: Issues, Methods, and Applications”. In: IEEE Communications
Magazine 51.6 (2013).

[Pan+13b] R. K. Panta, R. Jana, F. Cheng, Y. R. Chen, and V. A. Vaishampayan.
“Phoenix: Storage Using an Autonomous Mobile Infrastructure”. In:
IEEE Transactions on Parallel and Distributed Systems 24.9 (2013),
pp. 1863–1873.

[Pan+15] Zhengyuan Pang, Lifeng Sun, Zhi Wang, Erfang Tian, and Shiqiang
Yang. “A Survey of Cloudlet Based Mobile Computing”. In: Proc. of the
International Conference on Cloud Computing and Big Data (CCBD).
2015, pp. 268–275.

Bibliography 235

[Pan+16] Jianli Pan, Lin Ma, Ravishankar Ravindran, and Peyman TalebiFard.
“HomeCloud: An edge cloud framework and testbed for new ap-
plication delivery”. In: Proc. of the 23rd International Conference on
Telecommunications (ICT). 2016, pp. 1–6.

[Pap03] Mike P. Papazoglou. “Service-Oriented Computing: Concepts, Charac-
teristics and Directions”. In: Proc. of the Fourth International Confer-
ence on Web Information Systems Engineering. WISE ’03. 2003, pp. 3–
12.

[Par+14] Jongse Park, Xin Zhang, Kangqi Ni, Hadi Esmaeilzadeh, and Mayur
Naik. Expax: A framework for automating approximate programming.
Tech. rep. Georgia Institute of Technology, 2014, pp. 1–17.

[Pas+18] Francisco Javier Ferrández Pastor, Juan Manuel García Chamizo,
Mario Nieto-Hidalgo, and José Mora-Martínez. “Precision Agricul-
ture Design Method Using a Distributed Computing Architecture on
Internet of Things Context”. In: Sensors 18.6 (2018), pp. 1–21.

[PBC17] Juan F. Pérez, Robert Birke, and Lydia Y. Chen. “On the latency-
accuracy tradeoff in approximate MapReduce jobs”. In: Proc. of the
2017 IEEE Conference on Computer Communications (INFOCOM).
2017, pp. 1–9.

[PD99] Norman W. Paton and Oscar Díaz. “Active Database Systems”. In: ACM
Computing Surveys 31.1 (1999), pp. 63–103.

[Pej18] Veljko Pejovic. “Towards Approximate Mobile Computing”. In: Get-
Mobile: Mobile Computing and Communications 22.4 (2018), pp. 9–
12.

[Pen+15] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and
Roy Campbell. “R-Storm: Resource-Aware Scheduling in Storm”. In:
Proc. of the 16th ACM/IFIP/USENIX Annual Middleware Conference
(Middleware). 2015, pp. 149–161.

[Per+14a] Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dimitrios
Georgakopoulos. “Context Aware Computing for The Internet of
Things: A Survey”. In: IEEE Communications Surveys & Tutorials 16.1
(2014), pp. 414–454.

[Per+14b] Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dimitrios
Georgakopoulos. “Sensing as a service model for smart cities sup-
ported by Internet of Things”. In: Transactions on Emerging Telecom-
munications Technologies 25.1 (2014), pp. 81–93.

[Per+15] Charith Perera, Rajiv Ranjan, Lizhe Wang, Samee Ullah Khan, and
Albert Y. Zomaya. “Big Data Privacy in the Internet of Things Era”.
In: IT Professional 17.3 (2015), pp. 32–39.

[Per+17a] Charith Perera, Yongrui Qin, Júlio Cezar Estrella, Stephan Reiff-
Marganiec, and Athanasios V. Vasilakos. “Fog Computing for Sus-
tainable Smart Cities: A Survey”. In: ACM Computing Surveys 50.3
(2017), 32:1–32:43.

236 Bibliography

[Per+17b] Charith Perera, Susan Wakenshaw, Tim Baarslag, Hamed Haddadi,
Arosha K. Bandara, Richard Mortier, Andy Crabtree, Irene Ng, Derek
McAuley, and Jon Crowcroft. “Valorising the IoT databox: creating
value for everyone”. In: Transactions on Emerging Telecommunications
Technologies 28.1 (2017), pp. 1–17.

[Pie+06] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Rous-
sopoulos, Matt Welsh, and Margo Seltzer. “Network-Aware Operator
Placement for Stream-Processing Systems”. In: Proc. of the 22nd
International Conference on Data Engineering (ICDE). 2006, pp. 1–12.

[PL15] Claus Pahl and Brian Lee. “Containers and Clusters for Edge Cloud Ar-
chitectures - A Technology Review”. In: Proc. of the 3rd International
Conference on Future Internet of Things and Cloud. 2015, pp. 379–386.

[PLM17] Riccardo Petrolo, Valeria Loscrí, and Nathalie Mitton. “Towards a
smart city based on cloud of things, a survey on the smart city vision
and paradigms”. In: Transactions on Emerging Telecommunications
Technologies 28.1 (2017).

[PM17] Jianli Pan and James McElhannon. “Future edge cloud and edge com-
puting for internet of things applications”. In: IEEE Internet of Things
Journal 5.1 (2017), pp. 439–449.

[Pow+15] Nathaniel Powers, Alexander Alling, Kiara Osolinsky, Tolga Soyata,
Meng Zhu, Haoliang Wang, He Ba, Wendi B. Heinzelman, Jiye Shi,
and Minseok Kwon. “The Cloudlet Accelerator: Bringing Mobile-
Cloud Face Recognition into Real-Time”. In: Proc. of the 2015 IEEE
Globecom Workshops. 2015, pp. 1–7.

[Pre+15] J. S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, and E. Calis.
“The Benefits of Self-Awareness and Attention in Fog and Mist Com-
puting”. In: Computer 48.7 (2015), pp. 37–45.

[PS11] B. Pernici and S. H. Siadat. “Selection of Service Adaptation Strategies
Based on Fuzzy Logic”. In: Proc. of the 2011 IEEE World Congress on
Services. 2011, pp. 99–106.

[PS18] Jared N. Plumb and Ryan Stutsman. “Exploiting Google’s Edge Net-
work for Massively Multiplayer Online Games”. In: Proc. of the 2nd
IEEE International Conference on Fog and Edge Computing (ICFEC).
2018, pp. 1–8.

[Psa+18] Ioannis Psaras, Onur Ascigil, Sergi Rene, George Pavlou, Alexander
Afanasyev, and Lixia Zhang. “Mobile Data Repositories at the Edge”.
In: Proc. of the USENIX Workshop on Hot Topics in Edge Computing
(HotEdge). 2018.

[PSM10] Michael Angelo A. Pedrasa, Ted D. Spooner, and Iain F. MacGill. “Co-
ordinated scheduling of residential distributed energy resources to
optimize smart home energy services”. In: IEEE Transactions on Smart
Grid 1.2 (2010), pp. 134–143.

[Pul+18] C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino. “Vir-
tualization and Migration at the Network Edge: An Overview”. In:
Proc. of the 2018 IEEE International Conference on Smart Computing
(SMARTCOMP). 2018, pp. 368–374.

Bibliography 237

[Pul+19] Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito,
and Omer Rana. “Fog Computing for the Internet of Things: A Sur-
vey”. In: ACM Transactions on Internet Technology 19.2 (2019), 18:1–
18:41.

[PW02] Lothar Pantel and Lars C. Wolf. “On the Impact of Delay on Real-time
Multiplayer Games”. In: Proc. of the 12th International Workshop on
Network and Operating Systems Support for Digital Audio and Video.
NOSSDAV ’02. 2002, pp. 23–29.

[PY10] J. T. Piao and J. Yan. “A Network-aware Virtual Machine Placement
and Migration Approach in Cloud Computing”. In: Proc. of the 9th
International Conference on Grid and Cloud Computing (GCC). 2010,
pp. 87–92.

[Qiu+18] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh
Govindan. “AVR: Augmented Vehicular Reality”. In: Proc. of the 16th
International Conference on Mobile Systems, Applications, and Services.
MobiSys ’18. 2018, pp. 81–95.

[QKB17] Bozhao Qi, Lei Kang, and Suman Banerjee. “A vehicle-based edge
computing platform for transit and human mobility analytics”. In:
Proc. of the Second ACM/IEEE Symposium on Edge Computing (SEC).
2017, 1:1–1:14.

[Ra+11] Moo-Ryong Ra, Anmol Sheth, Lily B. Mummert, Padmanabhan Pil-
lai, David Wetherall, and Ramesh Govindan. “Odessa: enabling inter-
active perception applications on mobile devices”. In: Proc. of ACM
MobiSys. 2011, pp. 43–56.

[RAD18] Thomas Rausch, Cosmin Avasalcai, and Schahram Dustdar. “Portable
Energy-Aware Cluster-Based Edge Computers”. In: Proc. of the 2018
IEEE/ACM Symposium on Edge Computing (SEC). 2018, pp. 260–272.

[RCR11] Meike Ramon, Stéphanie Caharel, and Bruno Rossion. “The speed of
recognition of personally familiar faces”. In: Perception 40 (2011),
pp. 437–449.

[RDR10] Stamatia Rizou, Frank Dürr, and Kurt Rothermel. “Solving the multi-
operator placement problem in large-scale operator networks”. In:
Proc. of the 19th International Conference on Computer Communica-
tions (ICCCN). 2010, pp. 1–6.

[RDU18] Yefeng Ruan, Arjan Durresi, and Suleyman Uslu. “Trust Assessment
for Internet of Things in Multi-access Edge Computing”. In: Proc. of
the 32nd IEEE International Conference on Advanced Information Net-
working and Applications (AINA). 2018, pp. 1155–1161.

[Rei+12] Andreas Reinhardt, Paul Baumann, Daniel Burgstahler, Matthias Hol-
lick, Hristo Chonov, Marc Werner, and Ralf Steinmetz. “On the accu-
racy of appliance identification based on distributed load metering
data”. In: Proc. of the 2nd IFIP Conference on Sustainable Internet and
ICT for Sustainability (SustainIT). 2012, pp. 1–9.

[Ren+18] Yongzheng Ren, Feng Zeng, Wenjia Li, and Lin Meng. “A Low-Cost
Edge Server Placement Strategy in Wireless Metropolitan Area Net-
works”. In: Proc. of the 27th International Conference on Computer
Communication and Networks (ICCCN). 2018, pp. 1–6.

238 Bibliography

[Rez+18] Alex Reznik, Anthony Sulisti, Alexander Artemenko, Yonggang Fang,
Danny Frydman, Fabio Giust, HuaZhang Lv, Saad Ullah Sheikh, Yifan
Yu, and Zhou Zheng. MEC in an Enterprise Setting: A Solution Outline.
Tech. rep. ETSI, 2018.

[RH05] Maxim Raya and Jean-Pierre Hubaux. “The Security of Vehicular Ad
Hoc Networks”. In: Proc. of the 3rd ACM Workshop on Security of Ad
Hoc and Sensor Networks. SASN ’05. 2005, pp. 11–21.

[RLM18] Rodrigo Roman, Javier López, and Masahiro Mambo. “Mobile edge
computing, Fog et al.: A survey and analysis of security threats and
challenges”. In: Future Generation Computer Systems 78 (2018),
pp. 680–698.

[RN16] Flavio Ramalho and Augusto Neto. “Virtualization at the network
edge: A performance comparison”. In: Proc. of the 17th IEEE Inter-
national Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM). 2016, pp. 1–6.

[Sal+18] Mohammad A. Salahuddin, Jagruti Sahoo, Roch H. Glitho, Halima
Elbiaze, and Wessam Ajib. “A Survey on Content Placement Algo-
rithms for Cloud-Based Content Delivery Networks”. In: IEEE Access
6 (2018), pp. 91–114.

[Sam+11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. “EnerJ: approximate data types
for safe and general low-power computation”. In: Proc. of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). 2011, pp. 164–174.

[San+14] Nay Myo Sandar, Sivadon Chaisiri, Sira Yongchareon, and Veronica
Liesaputra. “Cloud-Based Video Monitoring Framework: An Ap-
proach Based on Software-Defined Networking for Addressing Scal-
ability Problems”. In: Proc. of Web Information Systems Engineering
(WISE) Workshops. 2014, pp. 176–189.

[Sap+16] Marco Sapienza, Ermanno Guardo, Marco Cavallo, Giuseppe La
Torre, Guerrino Leombruno, and Orazio Tomarchio. “Solving Critical
Events through Mobile Edge Computing: An Approach for Smart
Cities”. In: Proc. of the 2016 IEEE International Conference on Smart
Computing, (SMARTCOMP). 2016, pp. 1–5.

[Sat+09] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel
Davies. “The Case for VM-Based Cloudlets in Mobile Computing”. In:
IEEE Pervasive Computing 8.4 (2009), pp. 14–23.

[Sat+13] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha. “The Role of Cloudlets in Hostile Environments”. In: IEEE Per-
vasive Computing 12.4 (2013), pp. 40–49.

[Sat+14] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolf-
gang Richter, and Padmanabhan Pillai. “Cloudlets: At the leading
edge of mobile-cloud convergence”. In: Proc. of the 6th International
Conference on Mobile Computing, Applications and Services (Mobi-
CASE). 2014, pp. 1–9.

Bibliography 239

[Sat+16] Arjuna Sathiaseelan, Adisorn Lertsinsrubtavee, Adarsh Jagan, Pra-
kash Baskaran, and Jon Crowcroft. “Cloudrone: Micro Clouds in the
Sky”. In: Proc. of the 2nd Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications for Civilian Use (DroNet). 2016, pp. 41–44.

[Sat+17] Mahadev Satyanarayanan, Phillip B. Gibbons, Lily B. Mummert, Pad-
manabhan Pillai, Pieter Simoens, and Rahul Sukthankar. “Cloudlet-
based just-in-time indexing of IoT video”. In: Proc. of the Global Inter-
net of Things Summit (GIoTS 2017). 2017, pp. 1–8.

[Sat01] Mahadev Satyanarayanan. “Pervasive computing: vision and chal-
lenges”. In: IEEE Personal Communications 8.4 (2001), pp. 10–17.

[Sat04] M. Satyanarayanan. “Augmenting Cognition”. In: IEEE Pervasive Com-
puting 3.2 (2004), pp. 4–5.

[Sat11] Mahadev Satyanarayanan. “Mobile computing: the next decade”. In:
Mobile Computing and Communications Review 15.2 (2011), pp. 2–
10.

[Sat17] Mahadev Satyanarayanan. “The Emergence of Edge Computing”. In:
IEEE Computer 50.1 (2017), pp. 30–39.

[SBD18] Meenakshi Syamkumar, Paul Barford, and Ramakrishnan Durairajan.
“Deployment Characteristics of "The Edge" in Mobile Edge Comput-
ing”. In: Proc. of the 2018 Workshop on Mobile Edge Communications
(MECOMM). 2018, pp. 43–49.

[SBH16] Farzad Samie, Lars Bauer, and Jörg Henkel. “IoT Technologies for Em-
bedded Computing: A Survey”. In: Proc. of the 11th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis. CODES ’16. 2016, 8:1–8:10.

[Sce+11] Salvatore Scellato, Cecilia Mascolo, Mirco Musolesi, and Jon Crow-
croft. “Track Globally, Deliver Locally: Improving Content Delivery
Networks by Tracking Geographic Social Cascades”. In: Proc. of the
20th International Conference on World Wide Web. WWW’11. 2011,
pp. 457–466.

[Sch+08] E. Schoch, F. Kargl, M. Weber, and T. Leinmüller. “Communication pat-
terns in VANETs”. In: IEEE Communications Magazine 46.11 (2008),
pp. 119–125.

[Sch+11] Hans Schaffers, Nicos Komninos, Marc Pallot, Brigitte Trousse,
Michael Nilsson, and Alvaro Oliveira. “Smart Cities and the Future
Internet: Towards Cooperation Frameworks for Open Innovation”.
In: Proc. of the Future Internet Assembly 2011: Achievements and
Technological Promises. 2011, pp. 431–446.

[Sch+12] Immanuel Schweizer, Christian Meurisch, Julien Gedeon, Roman
Bärtl, and Max Mühlhäuser. “Noisemap: multi-tier incentive mech-
anisms for participative urban sensing”. In: Proc. of the 3rd In-
ternational Workshop on Sensing Applications on Mobile Phones.
PhoneSense ’12. ACM. 2012, 9:1–9:5.

240 Bibliography

[Sch+15] Benedikt Schmidt, Sebastian Benchea, Rüdiger Eichin, and Christian
Meurisch. “Fitness Tracker or Digital Personal Coach: How to Per-
sonalize Training”. In: Adjunct Proc. of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing and Proc. of
the 2015 ACM International Symposium on Wearable Computers. Ubi-
Comp/ISWC’15 Adjunct. 2015, pp. 1063–1067.

[Sch+16a] Dominik Schäfer, Janick Edinger, Justin Mazzola Paluska, Sebastian
VanSyckel, and Christian Becker. “Tasklets: "Better than Best-Effort"
Computing”. In: Proc. of the 25th International Conference on Com-
puter Communication and Networks (ICCCN). 2016, pp. 1–11.

[Sch+16b] Johannes M. Schleicher, Michael Vögler, Schahram Dustdar, and
Christian Inzinger. “Enabling a smart city application ecosystem:
Requirements and architectural aspects”. In: IEEE Internet Computing
20.2 (2016), pp. 58–65.

[Sch+17] Eve M. Schooler, David Zage, Jeff Sedayao, Hassnaa Moustafa, An-
drew Brown, and Moreno Ambrosin. “An Architectural Vision for a
Data-Centric IoT: Rethinking Things, Trust and Clouds”. In: Proc. of
the 37th IEEE International Conference on Distributed Computing Sys-
tems (ICDCS). 2017, pp. 1717–1728.

[Sco+19] Domenico Scotece, Nafize R. Paiker, Luca Foschini, Paolo Bellavista,
Xiaoning Ding, and Cristian Borcea. “MEFS: Mobile Edge File Sys-
tem for Edge-Assisted Mobile Apps”. In: Proc. of the 20th IEEE Inter-
national Symposium on "A World of Wireless, Mobile and Multimedia
Networks" (WoWMoM). 2019, pp. 1–9.

[SF05] Ya-Yunn Su and Jason Flinn. “Slingshot: deploying stateful services
in wireless hotspots”. In: Proc. of the 3rd International Conference on
Mobile Systems, Applications, and Services (MobiSys). 2005, pp. 79–
92.

[Sha+11] Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein, Rasekh Ri-
faat, and Chita R. Das. “Modeling and synthesizing task placement
constraints in Google compute clusters”. In: Proc. of the ACM Sympo-
sium on Cloud Computing (SOCC). 2011, pp. 1–14.

[Shi+11] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and
Dawn Song. “Privacy-Preserving Aggregation of Time-Series Data”.
In: Proc. of the Network and Distributed System Security Symposium
(NDSS). 2011, pp. 1–17.

[Shi+13] Muhammad Shiraz, Saeid Abolfazli, Zohreh Sanaei, and Abdullah
Gani. “A study on virtual machine deployment for application out-
sourcing in mobile cloud computing”. In: The Journal of Supercom-
puting 63.3 (2013), pp. 946–964.

[Shi+14] Cong Shi, Karim Habak, Pranesh Pandurangan, Mostafa Ammar,
Mayur Naik, and Ellen Zegura. “COSMOS: Computation Offloading
as a Service for Mobile Devices”. In: Proc. of the 15th ACM Inter-
national Symposium on Mobile Ad Hoc Networking and Computing.
MobiHoc ’14. 2014, pp. 287–296.

Bibliography 241

[Shi+15] Jinghao Shi, Liwen Gui, Dimitrios Koutsonikolas, Chunming Qiao,
and Geoffrey Challen. “A Little Sharing Goes a Long Way: The Case
for Reciprocal Wifi Sharing”. In: Proc. of the 2nd International Work-
shop on Hot Topics in Wireless. HotWireless ’15. 2015, pp. 6–10.

[Shi+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge
Computing: Vision and Challenges”. In: IEEE Internet of Things Jour-
nal 3.5 (2016), pp. 637–646.

[Shi+19] Shu Shi, Varun Gupta, Michael Hwang, and Rittwik Jana. “Mobile VR
on Edge Cloud: A Latency-driven Design”. In: Proc. of the 10th ACM
Multimedia Systems Conference. MMSys ’19. 2019, pp. 222–231.

[Sid+11] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin C. Rinard. “Managing performance vs. accuracy trade-offs
with loop perforation”. In: Proc. of the SIGSOFT/FSE’11 19th ACM
SIGSOFT Symposium on the Foundations of Software Engineering
(FSE-19) and ESEC’11: 13th European Software Engineering Confer-
ence (ESEC-13). 2011, pp. 124–134.

[Sil+16] Ana Cristina Franco da Silva, Uwe Breitenbücher, Kálmán Képes,
Oliver Kopp, and Frank Leymann. “OpenTOSCA for IoT: Automating
the Deployment of IoT Applications based on the Mosquitto Message
Broker”. In: Proc. of the 6th International Conference on the Internet
of Things (IOT). 2016, pp. 181–182.

[Sil16] Alan Sill. “The Design and Architecture of Microservices”. In: IEEE
Cloud Computing 3.5 (2016), pp. 76–80.

[Sim+13] Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong
Ha, and Mahadev Satyanarayanan. “Scalable crowd-sourcing of video
from mobile devices”. In: Proc. of the 11th International Conference on
Mobile Systems, Applications, and Services (MobiSys). 2013, pp. 139–
152.

[SKK12] M. Sharifi, S. Kafaie, and O. Kashefi. “A Survey and Taxonomy of
Cyber Foraging of Mobile Devices”. In: IEEE Communications Surveys
Tutorials 14.4 (2012), pp. 1232–1243.

[SLM17] L. Sun, Y. Li, and R. A. Memon. “An open IoT framework based on
microservices architecture”. In: China Communications 14.2 (2017),
pp. 154–162.

[SMR13] Luis Emiliano Sanchez, Sabine Moisan, and Jean-Paul Rigault. “Met-
rics on feature models to optimize configuration adaptation at run
time”. In: Proc. of the 1st International Workshop on Combining
Modelling and Search-Based Software Engineering, (CMSBSE). 2013,
pp. 39–44.

[SMT10] Patrick Stuedi, Iqbal Mohomed, and Doug Terry. “WhereStore:
Location-based Data Storage for Mobile Devices Interacting with
the Cloud”. In: Proc. of the 1st ACM Workshop on Mobile Cloud Com-
puting & Services: Social Networks and Beyond. MCS ’10. 2010, 1:1–
1:8.

242 Bibliography

[SP15] Fabrice Starks and Thomas Peter Plagemann. “Operator placement
for efficient distributed complex event processing in MANETs”. In:
Proc. of the 11th IEEE International Conference on Wireless and Mobile
Computing (WiMob). 2015, pp. 83–90.

[Spi17] Josef Spillner. “Snafu: Function-as-a-Service (FaaS) Runtime Design
and Implementation”. In: CoRR abs/1703.07562 (2017), pp. 1–15.

[SS13] O. Saleh and K. Sattler. “Distributed Complex Event Processing in Sen-
sor Networks”. In: Proc. of the 2013 IEEE 14th International Confer-
ence on Mobile Data Management. 2013, pp. 23–26.

[SS14] Immanuel Schweizer and Benedikt Schmidt. “Kraken.Me: Multi-
device User Tracking Suite”. In: Proc. of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication. UbiComp ’14 Adjunct. 2014, pp. 853–862.

[Ste92] Jonathan Steuer. “Defining Virtual Reality: Dimensions Determining
Telepresence”. In: Journal of Communication 42.4 (1992), pp. 73–93.

[Ste97] Robert Stephens. “A Survey of Stream Processing”. In: Acta Informat-
ica 34.7 (1997), pp. 491–541.

[STH18] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan van den
Heuvel. “The pains and gains of microservices: A Systematic grey
literature review”. In: Journal of Systems and Software 146 (2018),
pp. 215–232.

[Sto+16] Ivan Stojmenovic, Sheng Wen, Xinyi Huang, and Hao Luan. “An
overview of Fog computing and its security issues”. In: Concurrency
and Computation: Practice and Experience 28.10 (2016), pp. 2991–
3005.

[Sto12] Milos Stojmenovic. “Mobile Cloud Computing for Biometric Applica-
tions”. In: Proc. of the 15th International Conference on Network-Based
Information Systems (NBiS 2012). 2012, pp. 654–659.

[Swa12] Melanie Swan. “Health 2050: The Realization of Personalized
Medicine through Crowdsourcing, the Quantified Self, and the Partic-
ipatory Biocitizen”. In: Journal of Personalized Medicine 2.3 (2012),
pp. 93–118.

[Tal+17] Tarik Taleb, Sunny Dutta, Adlen Ksentini, Muddesar Iqbal, and Hannu
Flinck. “Mobile Edge Computing Potential in Making Cities Smarter”.
In: IEEE Communications Magazine 55.3 (2017), pp. 38–43.

[Tan+15] Haowen Tang, Fangming Liu, Guobin Shen, Yuchen Jin, and Chuanx-
iong Guo. “UniDrive: Synergize Multiple Consumer Cloud Storage
Services”. In: Proc. of the 16th Annual Middleware Conference. Mid-
dleware ’15. ACM, 2015, pp. 137–148.

[Tha+18] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci.
“CNTR: Lightweight OS Containers”. In: Proc. of the 2018 USENIX
Annual Technical Conference (ATC). 2018, pp. 199–212.

[Tho12] Bruce H. Thomas. “A Survey of Visual, Mixed, and Augmented Reality
Gaming”. In: Computers in Entertainment 10.1 (2012), 3:1–3:33.

Bibliography 243

[TLL14] Cory Thoma, Alexandros Labrinidis, and Adam J. Lee. “Automated
operator placement in distributed Data Stream Management Systems
subject to user constraints”. In: Workshops Proc. of the 30th Interna-
tional Conference on Data sEngineering Workshops (ICDE Workshops).
2014, pp. 310–316.

[TLP17] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. “Processes, Mo-
tivations, and Issues for Migrating to Microservices Architectures:
An Empirical Investigation”. In: IEEE Cloud Computing 4.5 (2017),
pp. 22–32.

[Tra+17] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili. “Collaborative
multi-bitrate video caching and processing in Mobile-Edge Com-
puting networks”. In: Proc. of the 2017 13th Annual Conference on
Wireless On-demand Network Systems and Services (WONS). 2017,
pp. 165–172.

[Tri+19] Marco Trinelli, Massimo Gallo, Myriana Rifai, and Fabio Pianese.
“Transparent AR Processing Acceleration at the Edge”. In: Proc.
of the 2nd International Workshop on Edge Systems, Analytics and
Networking (EdgeSys). 2019, pp. 30–35.

[Tsa+17] P. Tsai, H. Hong, A. Cheng, and C. Hsu. “Distributed analytics in fog
computing platforms using tensorflow and kubernetes”. In: Proc. of
the 2017 19th Asia-Pacific Network Operations and Management Sym-
posium (APNOMS). 2017, pp. 145–150.

[TVM18] G. Tanganelli, C. Vallati, and E. Mingozzi. “Edge-Centric Distributed
Discovery and Access in the Internet of Things”. In: IEEE Internet of
Things Journal 5.1 (2018), pp. 425–438.

[Val+16] Carlo Vallati, Antonio Virdis, Enzo Mingozzi, and Giovanni Stea.
“Mobile-edge computing come home connecting things in future
smart homes using LTE device-to-device communications”. In: IEEE
Consumer Electronics Magazine 5.4 (2016), pp. 77–83.

[Var+16] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los. “Challenges and Opportunities in Edge Computing”. In: Proc. of
the 2016 IEEE International Conference on Smart Cloud (SmartCloud).
2016, pp. 20–26.

[Var+17] Blesson Varghese, Nan Wang, Dimitrios S. Nikolopoulos, and Rajku-
mar Buyya. “Feasibility of Fog Computing”. In: CoRR abs/1701.05451
(2017), pp. 1–8.

[Vas+15] Emmanouil Vasilomanolakis, Jörg Daubert, Manisha Luthra, Vangelis
Gazis, Alexander Wiesmaier, and Panayotis Kikiras. “On the Security
and Privacy of Internet of Things Architectures and Systems”. In: Proc.
of the 2015 International Workshop on Secure Internet of Things (SIoT).
2015, pp. 49–57.

[vBS01] J. van Gurp, J. Bosch, and M. Svahnberg. “On the notion of variability
in software product lines”. In: Proc. of the Working IEEE/IFIP Confer-
ence on Software Architecture. 2001, pp. 45–54.

244 Bibliography

[Ver+12a] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt.
“Cloudlets: Bringing the Cloud to the Mobile User”. In: Proc. of the
3rd ACM Workshop on Mobile Cloud Computing and Services (MCS).
2012, pp. 29–36.

[Ver+12b] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. “AIO-
LOS: Middleware for improving mobile application performance
through cyber foraging”. In: Journal of Systems and Software 85.11
(2012), pp. 2629–2639.

[Vii+18] M. Viitanen, J. Vanne, T. D. Hämäläinen, and A. Kulmala. “Low La-
tency Edge Rendering Scheme for Interactive 360 Degree Virtual Re-
ality Gaming”. In: Proc. of the 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS). 2018, pp. 1557–1560.

[Vil+15a] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R.
Casallas, and S. Gil. “Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud”. In:
Proc.of the 2015 10th Computing Colombian Conference (10CCC).
2015, pp. 583–590.

[Vil+15b] Felix Jesús Villanueva, David Villa, Maria J. Santofimia, Jesús Barba,
and Juan Carlos López. “Crowdsensing smart city parking monitor-
ing”. In: Proc. of the 2nd IEEE World Forum on Internet of Things (WF-
IoT). 2015, pp. 751–756.

[Vil+16a] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Ver-
ano, R. Casallas, S. Gil, C. Valencia, A. Zambrano, and M. Lang. “Infra-
structure Cost Comparison of Running Web Applications in the Cloud
Using AWS Lambda and Monolithic and Microservice Architectures”.
In: Proc. of the 2016 16th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid). 2016, pp. 179–182.

[Vil+16b] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer F. Rana, and
Rajiv Ranjan. “Osmotic Computing: A New Paradigm for Edge/Cloud
Integration”. In: IEEE Cloud Computing 3.6 (2016), pp. 76–83.

[VP03] Athena Vakali and George Pallis. “Content Delivery Networks: Status
and Trends”. In: IEEE Internet Computing 7.6 (2003), pp. 68–74.

[VR14] Luis M. Vaquero and Luis Rodero-Merino. “Finding Your Way in the
Fog: Towards a Comprehensive Definition of Fog Computing”. In: SIG-
COMM Computer Communication Review 44.5 (2014), pp. 27–32.

[Vul+15] Ashish Vulimiri, Carlo Curino, P. Brighten Godfrey, Thomas Jungblut,
Jitu Padhye, and George Varghese. “Global Analytics in the Face of
Bandwidth and Regulatory Constraints”. In: Proc. of the 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
2015, pp. 323–336.

[Wag19] Martin Wagner. “A Microservice-Based Offloading Architecture for
Edge Computing”. Master’s Thesis. Technische Universität Darmstadt,
Department of Computer Science, 2019.

Bibliography 245

[Wan+12] Zhaoran Wang, Yu Zhang, Xiaotao Chang, Xiang Mi, Yu Wang, Kun
Wang, and Huazhong Yang. “Pub/Sub on stream: a multi-core based
message broker with QoS support”. In: Proc. of the 6th ACM Interna-
tional Conference on Distributed Event-Based Systems (DEBS). 2012,
pp. 127–138.

[Wan+15] Lin Wang, Antonio Fernández Anta, Fa Zhang, Jie Wu, and Zhiyong
Liu. “Multi-resource energy-efficient routing in cloud data centers
with network-as-a-service”. In: Proc. of the 2015 IEEE Symposium on
Computers and Communication (ISCC). 2015, pp. 694–699.

[Wan+16] C. Wang, Y. Li, D. Jin, and S. Chen. “On the Serviceability of Mo-
bile Vehicular Cloudlets in a Large-Scale Urban Environment”. In:
IEEE Transactions on Intelligent Transportation Systems 17.10 (2016),
pp. 2960–2970.

[Wan+17] Qixu Wang, Dajiang Chen, Ning Zhang, Zhe Ding, and Zhiguang Qin.
“PCP: A Privacy-Preserving Content-Based Publish-Subscribe Scheme
With Differential Privacy in Fog Computing”. In: IEEE Access 5 (2017),
pp. 17962–17974.

[Wan+18a] Jiafu Wan, Baotong Chen, Shiyong Wang, Min Xia, Di Li, and
Chengliang Liu. “Fog computing for energy-aware load balancing
and scheduling in smart factory”. In: Transactions on Industrial Infor-
matics 14.10 (2018), pp. 4548–4556.

[Wan+18b] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S. Yang,
and M. Satyanarayanan. “Bandwidth-Efficient Live Video Analytics
for Drones Via Edge Computing”. In: Proc. of the 2018 IEEE/ACM
Symposium on Edge Computing (SEC). 2018, pp. 159–173.

[Wan+18c] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael M. Swift. “Peeking Behind the Curtains of Serverless Plat-
forms”. In: Proc. of the 2018 USENIX Annual Technical Conference
(ATC). 2018, pp. 133–146.

[Wan+19] Lin Wang, Lei Jiao, Jun Li, Julien Gedeon, and Max Mühlhäuser.
“MOERA: Mobility-agnostic Online Resource Allocation for Edge
Computing”. In: IEEE Transactions on Mobile Computing 18.8 (2019),
pp. 1843–1856.

[Wan06] Roy Want. “An Introduction to RFID Technology”. In: IEEE Pervasive
Computing 5.1 (2006), pp. 25–33.

[Wan11] Bang Wang. “Coverage Problems in Sensor Networks: A Survey”. In:
ACM Computing Surveys 43.4 (2011), 32:1–32:53.

[WD10] Shaoxuan Wang and Sujit Dey. “Rendering Adaptation to Address
Communication and Computation Constraints in Cloud Mobile Gam-
ing”. In: Proc. of the Global Communications Conference (GLOBECOM).
2010, pp. 1–6.

[Wec+18] Markus Weckesser, Roland Kluge, Martin Pfannemüller, Michael
Matthé, Andy Schürr, and Christian Becker. “Optimal reconfiguration
of dynamic software product lines based on performance-influence
models”. In: Proc. of the 22nd International Systems and Software
Product Line Conference (SPLC). 2018, pp. 98–109.

246 Bibliography

[Wen+18] Zhenyu Wen, Do Le Quoc, Pramod Bhatotia, Ruichuan Chen, and
Myungjin Lee. “ApproxIoT: Approximate Analytics for Edge Comput-
ing”. In: Proc. of the 38th IEEE International Conference on Distributed
Computing Systems (ICDCS). 2018, pp. 411–421.

[Wol+17] Sjaak Wolfert, Lan Ge, Cor Verdouw, and Marc-Jeroen Bogaardt. “Big
Data in Smart Farming – A review”. In: Agricultural Systems 153
(2017), pp. 69–80.

[Wu+13] Hsin-Kai Wu, Silvia Wen-Yu Lee, Hsin-Yi Chang, and Jyh-Chong
Liang. “Current status, opportunities and challenges of augmented
reality in education”. In: Computers & Education 62 (2013), pp. 41–
49.

[Wu+17a] Dazhong Wu, Shaopeng Liu, Li Zhang, Janis Terpenny, Robert X. Gao,
Thomas Kurfess, and Judith A. Guzzo. “A fog computing-based frame-
work for process monitoring and prognosis in cyber-manufacturing”.
In: Journal of Manufacturing Systems 43 (2017), pp. 25–34.

[Wu+17b] Song Wu, Chao Niu, Jia Rao, Hai Jin, and Xiaohai Dai. “Container-
Based Cloud Platform for Mobile Computation Offloading”. In: Proc.
of the 2017 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). 2017, pp. 123–132.

[Wu+18] Song Wu, Chao Mei, Hai Jin, and Duoqiang Wang. “Android Uniker-
nel: Gearing mobile code offloading towards edge computing”. In:
Future Generation Computer Systems 86 (2018), pp. 694–703.

[WUS15] Y. Wang, T. Uehara, and R. Sasaki. “Fog Computing: Issues and Chal-
lenges in Security and Forensics”. In: Proc. of the 2015 IEEE 39th An-
nual Computer Software and Applications Conference. 2015, pp. 53–
59.

[XGR18] Zhuangdi Xu, Harshit Gupta, and Umakishore Ramachandran.
“STTR: A System for Tracking All Vehicles All the Time At the Edge of
the Network”. In: Proc. of the 12th ACM International Conference on
Distributed and Event-based Systems. DEBS ’18. 2018, pp. 124–135.

[Xio+18] Ying Xiong, Yulin Sun, Li Xing, and Ying Huang. “Extend Cloud to
Edge with KubeEdge”. In: Proc. of the IEEE/ACM Symposium on Edge
Computing (SEC). 2018, pp. 373–377.

[XK17] Yong Xiao and Marwan Krunz. “QoE and power efficiency tradeoff
for fog computing networks with fog node cooperation”. In: Proc. of
the IEEE Conference on Computer Communications (INFOCOM). 2017,
pp. 1–9.

[XMK16] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. “Approximate Com-
puting: A Survey”. In: IEEE Design & Test 33.1 (2016), pp. 8–22.

[Xu+14] Song Xu, Manuela Pérez, Kun Yang, Cyril Perrenot, Jacques Fel-
blinger, and Jacques Hubert. “Determination of the latency effects on
surgical performance and the acceptable latency levels in telesurgery
using the dV-Trainer® simulator”. In: Surgical endoscopy 28.9 (2014),
pp. 2569–2576.

Bibliography 247

[Xu+15] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo. “Capacitated cloudlet
placements in Wireless Metropolitan Area Networks”. In: Proc. of
the 40th IEEE Conference on Local Computer Networks (LCN). 2015,
pp. 570–578.

[Xu+16] Zichuan Xu, Weifa Liang, Wenzheng Xu, Mike Jia, and Song Guo.
“Efficient Algorithms for Capacitated Cloudlet Placements”. In:
IEEE Transactions on Parallel and Distributed Systems 27.10 (2016),
pp. 2866–2880.

[Yan+10] Zhi Yang, Ben Y. Zhao, Yuanjian Xing, Song Ding, Feng Xiao, and Yafei
Dai. “AmazingStore: available, low-cost online storage service using
cloudlets”. In: Proc. of the 9th international conference on Peer-to-peer
systems (IPTPS). 2010, pp. 1–5.

[Yan+16] G. Yang, Q. Sun, A. Zhou, S. Wang, and J. Li. “Poster Abstract: Access
Point Ranking for Cloudlet Placement in Edge Computing Environ-
ment”. In: Proc. of the 2016 IEEE/ACM Symposium on Edge Computing
(SEC). 2016, pp. 85–86.

[Yao+17] Hong Yao, Changmin Bai, Muzhou Xiong, Deze Zeng, and Zhangjie
Fu. “Heterogeneous cloudlet deployment and user-cloudlet associa-
tion toward cost effective fog computing”. In: Concurrency and Com-
putation: Practice and Experience 29.16 (2017), pp. 1–9.

[Ye+13] Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. “On
reconfiguration-oriented approximate adder design and its applica-
tion”. In: Proc. of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 2013, pp. 48–54.

[Yi+15] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. “Fog Computing:
Platform and Applications”. In: Proc. of the Third IEEE Workshop on
Hot Topics in Web Systems and Technologies (HotWeb 2015). 2015,
pp. 73–78.

[Yi+17] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li. “LAVEA: Latency-
Aware Video Analytics on Edge Computing Platform”. In: Proc. of the
2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). 2017, pp. 2573–2574.

[Yin+17] Hao Yin, Xu Zhang, Hongqiang Harry Liu, Yan Luo, Chen Tian,
Shuoyao Zhao, and Feng Li. “Edge Provisioning with Flexible Server
Placement”. In: IEEE Transactions on Parallel and Distributed Systems
28.4 (2017), pp. 1031–1045.

[YLL15] Shanhe Yi, Cheng Li, and Qun Li. “A Survey of Fog Computing: Con-
cepts, Applications and Issues”. In: Proc. of the 2015 Workshop on
Mobile Big Data (Mobidata). 2015, pp. 37–42.

[YLN03] Jungkeun Yoon, Mingyan Liu, and Brian Noble. “Sound Mobility Mod-
els”. In: Proc. of the 9th Annual International Conference on Mobile
Computing and Networking (MOBICOM). Ed. by David B. Johnson,
Anthony D. Joseph, and Nitin H. Vaidya. 2003, pp. 205–216.

[You+17] C. You, K. Huang, H. Chae, and B. Kim. “Energy-Efficient Resource
Allocation for Mobile-Edge Computation Offloading”. In: IEEE Trans-
actions on Wireless Communications 16.3 (2017), pp. 1397–1411.

248 Bibliography

[You+19] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fate-
meh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. “All
One Needs to Know about Fog Computing and Related Edge Comput-
ing Paradigms: A Complete Survey”. In: Journal of Systems Architec-
ture 98 (2019), pp. 289–330.

[YQL15] Shanhe Yi, Zhengrui Qin, and Qun Li. “Security and Privacy Issues of
Fog Computing: A Survey”. In: Proc. of the 10th International Confer-
ence on Wireless Algorithms, Systems, and Applications (WASA). 2015,
pp. 685–695.

[Yu+18] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang. “A
Survey on the Edge Computing for the Internet of Things”. In: IEEE
Access 6 (2018), pp. 6900–6919.

[Yua+18] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen. “Toward Effi-
cient Content Delivery for Automated Driving Services: An Edge Com-
puting Solution”. In: IEEE Network 32.1 (2018), pp. 80–86.

[ZA08] Qian Zhu and Gagan Agrawal. “Resource Allocation for Distributed
Streaming Applications”. In: Proc. of the 2008 International Confer-
ence on Parallel Processing (ICPP). 2008, pp. 414–421.

[Zam+17] Ali Reza Zamani, Ioan Petri, Javier Diaz Montes, Omer F. Rana, and
Manish Parashar. “Edge-Supported Approximate Analysis for Long
Running Computations”. In: Proc. of the 5th IEEE International Confer-
ence on Future Internet of Things and Cloud (FiCloud). 2017, pp. 321–
328.

[Zan+14] Andrea Zanella, Nicola Bui, Angelo Paolo Castellani, Lorenzo Vange-
lista, and Michele Zorzi. “Internet of Things for Smart Cities”. In: IEEE
Internet of Things Journal 1.1 (2014), pp. 22–32.

[Zao+14] John K. Zao, Tchin Tze Gan, Chun Kai You, Sergio Jose Rodriguez
Mendez, Cheng En Chung, Yu-Te Wang, Tim R. Mullen, and Tzyy-Ping
Jung. “Augmented Brain Computer Interaction Based on Fog Comput-
ing and Linked Data”. In: Proc. of the 2014 International Conference
on Intelligent Environments. 2014, pp. 374–377.

[Zen+18] M. Zeng, Y. Li, K. Zhang, M. Waqas, and D. Jin. “Incentive Mechanism
Design for Computation Offloading in Heterogeneous Fog Comput-
ing: A Contract-Based Approach”. In: Proc. of the 2018 IEEE Interna-
tional Conference on Communications (ICC). 2018, pp. 1–6.

[Zey+16] Engin Zeydan, Ejder Bastug, Mehdi Bennis, Manhal Abdel Kader,
Ilyas Alper Karatepe, Ahmet Salih Er, and Mérouane Debbah. “Big
data caching for networking: moving from cloud to edge”. In: IEEE
Communications Magazine 54.9 (2016), pp. 36–42.

[Zha+14] Qian Zhang, Feng Yuan, Rong Ye, and Qiang Xu. “ApproxIt: An Ap-
proximate Computing Framework for Iterative Methods”. In: Proc.
of the 51st Annual Design Automation Conference 2014 (DAC). 2014,
97:1–97:6.

Bibliography 249

[Zha+15a] Feixiong Zhang, Chenren Xu, Yanyong Zhang, K. K. Ramakrishnan,
Shreyasee Mukherjee, Roy D. Yates, and Thu D. Nguyen. “EdgeBuffer:
Caching and prefetching content at the edge in the MobilityFirst fu-
ture Internet architecture”. In: Proc. of the 16th IEEE International
Symposium on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM). 2015, pp. 1–9.

[Zha+15b] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. “Approx-
ANN: an approximate computing framework for artificial neural net-
work”. In: Proc. of the 2015 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). 2015, pp. 701–706.

[Zha+17] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Dipankar Ray-
chaudhuri. “Towards efficient edge cloud augmentation for virtual
reality MMOGs”. In: Proc. of the Second ACM/IEEE Symposium on Edge
Computing (SEC). 2017, 8:1–8:14.

[Zha+18a] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward
A. Lee. “AWStream: adaptive wide-area streaming analytics”. In: Proc.
of the 2018 Conference of the ACM Special Interest Group on Data Com-
munication (SIGCOMM). 2018, pp. 236–252.

[Zha+18b] D. Zhang, Y. Ma, Y. Zhang, S. Lin, X. S. Hu, and D. Wang. “A Real-Time
and Non-Cooperative Task Allocation Framework for Social Sensing
Applications in Edge Computing Systems”. In: Proc. of the 2018 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS). 2018, pp. 316–326.

[Zha+18c] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu. “Data Security and
Privacy-Preserving in Edge Computing Paradigm: Survey and Open
Issues”. In: IEEE Access 6 (2018), pp. 18209–18237.

[Zha+18d] J. Zhang, X. Hu, Z. Ning, E.C.H. -. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu. “Energy-Latency Tradeoff for Energy-Aware Offloading in Mo-
bile Edge Computing Networks”. In: IEEE Internet of Things Journal
5.4 (2018), pp. 2633–2645.

[Zha+18e] Lei Zhao, Wen Sun, Yongpeng Shi, and Jiajia Liu. “Optimal Placement
of Cloudlets for Access Delay Minimization in SDN-Based Internet
of Things Networks”. In: IEEE Internet of Things Journal 5.2 (2018),
pp. 1334–1344.

[Zhe+11] Yu Zheng, Yanchi Liu, Jing Yuan, and Xing Xie. “Urban Computing
with Taxicabs”. In: Proc. of the 13th International Conference on Ubiq-
uitous Computing. UbiComp ’11. 2011, pp. 89–98.

[Zhe+14a] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. “Urban Comput-
ing: Concepts, Methodologies, and Applications”. In: ACM Transac-
tions on Intelligent Systems and Technology 5.3 (2014), 38:1–38:55.

[Zhe+14b] Yu Zheng, Tong Liu, Yilun Wang, Yanmin Zhu, Yanchi Liu, and Eric
Chang. “Diagnosing New York City’s Noises with Ubiquitous Data”.
In: Proc. of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. UbiComp ’14. 2014, pp. 715–725.

250 Bibliography

[Zho+15] S. Zhou, K. Lin, J. Na, C. Chuang, and C. Shih. “Supporting Service
Adaptation in Fault Tolerant Internet of Things”. In: Proc. of the 2015
IEEE 8th International Conference on Service-Oriented Computing and
Applications (SOCA). 2015, pp. 65–72.

[Zho+17] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya.
“mCloud: A Context-Aware Offloading Framework for Heteroge-
neous Mobile Cloud”. In: IEEE Transactions on Services Computing
10.5 (2017), pp. 797–810.

[Zhu+13] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu, and F. Bonomi.
“Improving Web Sites Performance Using Edge Servers in Fog Com-
puting Architecture”. In: Proc. of the 2013 IEEE 7th International Sym-
posium on Service-Oriented System Engineering. 2013, pp. 320–323.

[Zhu+15] Wen-Yuan Zhu, Wen-Chih Peng, Ling-Jyh Chen, Kai Zheng, and Xi-
aofang Zhou. “Modeling User Mobility for Location Promotion in
Location-based Social Networks”. In: Proc. of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD). 2015, pp. 1573–1582.

[ZLH13] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. “U-Air: When Urban Air
Quality Inference Meets Big Data”. In: Proc. of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
KDD ’13. 2013, pp. 1436–1444.

[ZMN05] F. Zhu, M. W. Mutka, and L. M. Ni. “Service discovery in pervasive
computing environments”. In: IEEE Pervasive Computing 4.4 (2005),
pp. 81–90.

Appendices

251

APPENDIX A

Access Point Location Estimation from Wardriving

LISTING A.1: ACCESSPOINT.RB SOURCE CODE FILE

1
2 r e q u i r e _ r e l a t i v e ’ u t i l s ’
3 r equ i r e ’ geoutm ’
4
5 c l a s s AccessPo in t
6 a t t r _ a c c e s s o r : b s s id
7 a t t r _ a c c e s s o r : s s i d
8 a t t r _ a c c e s s o r : measurement
9 a t t r _ a c c e s s o r : caps

10 a t t r _ a c c e s s o r : vendor
11
12 def i n i t i a l i z e (bss id , s s id , vendor , frequency , caps , s e c u r i t y ,

�→ timestamp , l a t , long , s i g n a l s t r e n g t h , d i s t ance)
13 @measurement = []
14 coord inate = GeoUtm : : LatLon . new(l a t . to_f , long . t o _ f)
15 utm = coord inate . to_utm ()
16 @measurement<<[timestamp , utm . e , utm . n , s i g n a l s t r e n g t h , d i s t ance]
17 @bssid = bs s id
18 @ssid = s s i d
19 @vendor = vendor
20 @frequency = f requency
21 @caps = caps
22 @securt iy = s e c u r i t y
23 @iter = 2000;
24 @alpha = 2 .0 ;
25 @ratio = 0.99;
26 @earthR = 6371
27 end
28
29 def addMeasurement (timestamp , l a t , long , s i g n a l s t r e n g t h , d i s t ance)
30 utm = GeoUtm : : LatLon . new(l a t . to_f , long . t o _ f) . to_utm ()

253

254 Appendix A. Access Point Location Estimation from Wardriving

31 @measurement<<[timestamp , utm . e , utm . n , s i g n a l s t r e n g t h , d i s t ance]
32 end
33
34 def d i s t (x_1 , x_2 , y_1 , y_2)
35 re turn Math . s q r t ((x_1 . t o _ f − x_2 . t o _ f)∗∗2 + (y_1 . t o _ f − y_2 .

�→ t o _ f)∗∗2)
36 end
37
38 def e s t i m a t e P o s i t i o n
39 numOfMeasurementPoints = @measurement . s i z e
40 i f numOfMeasurementPoints < 3
41 re turn f a l s e
42 end
43 l a t s = []
44 longs = []
45 @measurement . each do |mm|
46 gps = GeoUtm : :UTM. new(’ 32U ’ , mm[1] , mm[2] , e l l i p s o i d =

�→ GeoUtm : : E l l i p s o i d : :WGS84)
47 l a t l o n g = gps . t o _ l a t _ l o n
48 l a t s << l a t l o n g . l a t . t o _ f
49 longs << l a t l o n g . lon . t o _ f
50 end
51 avg la t = l a t s . i n j e c t {|sum , l a t | sum + l a t } / l a t s . s i z e
52 avglong = longs . i n j e c t {|sum , long | sum + long } / longs . s i z e
53
54 newmm = []
55 @measurement . each do |mm|
56 gps = GeoUtm : :UTM. new(’ 32U ’ , mm[1] , mm[2] , e l l i p s o i d =

�→ GeoUtm : : E l l i p s o i d : :WGS84)
57 l a t l o n g = gps . t o _ l a t _ l o n
58 l a t = l a t l o n g . l a t
59 long = l a t l o n g . lon
60 i f d i s t ance (l a t , long , avg la t , avglong) > 10
61 newmm << mm
62 end
63 end
64
65 @measurement = newmm
66 numOfMeasurementPoints = @measurement . s i z e
67 re turn n i l i f numOfMeasurementPoints == 0
68
69 de l t a = [0 .0 ,0 .0]
70 alpha = @alpha
71 utm_star t = GeoUtm : :UTM. new(’ 32U ’ ,@measurement [0] [1] ,

�→ @measurement [0] [2])
72 re s = [0 .0 ,0 .0]
73 f o r i t e r in 0 . . @iter
74 de l t a = [0 .0 ,0 .0]
75 @measurement . each do |mm|
76 d = d i s t (re s [0] ,mm[1] . to_ f , r e s [1] ,mm[2] . t o _ f)
77 d i f f = [((mm[1] . to_ f−r e s [0]) ∗
78 (alpha ∗ (d−mm[4] . t o _ f) / [mm[4] . to_ f , d] . max)) ,
79 ((mm[2] . to_ f−r e s [1]) ∗
80 (alpha ∗ (d−mm[4] . t o _ f) / [mm[4] . to_ f , d] . max))]

255

81 de l t a [0] = de l t a [0] + d i f f [0]
82 de l t a [1] = de l t a [1] + d i f f [1]
83 end
84 de l t a [0] = de l t a [0] ∗ (1 .0 / @measurement . length)
85 de l t a [1] = de l t a [1] ∗ (1 .0 / @measurement . length)
86 alpha = alpha ∗ @ratio
87 re s [0] = r e s [0] + de l t a [0] ;
88 re s [1] = r e s [1] + de l t a [1] ;
89 end
90 utm_coordinate = GeoUtm : :UTM. new(’ 32U ’ , r e s [0] , r e s [1] ,

�→ e l l i p s o i d = GeoUtm : : E l l i p s o i d : :WGS84)
91 l a t l o n g = utm_coordinate . t o _ l a t _ l o n
92 re turn l a t l o n g . l a t . to_s , l a t l o n g . lon . to_s
93 end
94 end

APPENDIX B

TOSCA Extension for the Description of Microservices1

##

The content of this file reflects TOSCA microservices Profile in

YAML version 1.0.0. It describes the definition for TOSCA

microservice types including Node Type, Relationship Type,

Capability Type and Interfaces.

##

t o s c a _ d e f i n i t i o n s _ v e r s i o n :
t o s ca_ s imp le_p ro f i l e _ fo r_mi c ro se r v i c e s_1_0_0

##

Node Type.

A Node Type is a reusable entity that defines the type of one or

more Node Templates.

##

node_types:
to sca . nodes . m i c ro se rv i c e s :

derived_from: tosca . nodes . Root
d e s c r i p t i o n : Base type fo r mic ro se rv i ce d e f i n i t i o n s .
p r o p e r t i e s :

id :
type: s t r i n g
d e s c r i p t i o n : ID of t h i s mic ro se rv i ce

name:
type: s t r i n g
d e s c r i p t i o n : Name of t h i s mic ro se rv i ce

mem_requirement:
d e s c r i p t i o n : Required memory in MB fo r t h i s mic ro se rv i ce .
type: i n t e g e r

input s :

1Contribution statement: I led the idea generation and design of the flexEdge framework. The
framework itself was implemented by Martin Wagner as part of this Master thesis [Wag19]. The TOSCA
extension shown here is taken from this implementation.

257

258 Appendix B. TOSCA Extension for the Description of Microservices

d e s c r i p t i o n : a l i s t of inpu t s t h i s mic rose rv i ce accep t s
type: to sca . data types . m i c ro se rv i c e_ inpu t s
requ i red: f a l se

outputs :
d e s c r i p t i o n : a l i s t of outputs t h i s mic rose rv i ce accep t s
type: to sca . data types . mic rose rv i ce_outpu t s
requ i red: f a l se

category :
d e s c r i p t i o n : the category path to which t h i s mic ro se rv i ce

belongs to
type: s t r i n g
requ i red: true

a l i v e_ t ime :
d e s c r i p t i o n : the time in seconds a f t e r which t h i s

mic ro se rv i ce w i l l be stopped
type: i n t e g e r
requ i red: f a l se
d e f a u l t : 300

w a i t _ f o r _ s t a r t :
d e s c r i p t i o n : de f ine s i f an agent should wait f o r a s t a r t

message sent by the mic ro se rv i ce
type: boolean
requ i red: f a l se
d e f a u l t : f a l se

mul t ip le_user_suppor t :
d e s c r i p t i o n : de f ine s i f the mic ro se rv i ce suppor ts mu l t ip l e

user s
type: boolean
requ i red: f a l se
d e f a u l t : f a l se

to sca . nodes . m i c ro se rv i c e s . docker_conta iner :
derived_from: tosca . nodes . m i c ro se r v i c e s
d e s c r i p t i o n : Base type fo r docker con ta ine r mic rose rv i ce

d e f i n i t i o n s .
p r o p e r t i e s :

bridge_network:
d e s c r i p t i o n : Name of the user−def ined br idge network , to

which t h i s mic ro se rv i ce should connect
type: s t r i n g
requ i red: f a l se

con ta ine r_por t :
d e s c r i p t i o n : Por t of the conta iner / a p p l i c a t i o n
type: to sca . data types . network . PortDef
requ i red: f a l se

con ta ine r_po r t s :
d e s c r i p t i o n : L i s t of por t s of the conta ine r / a p p l i c a t i o n
type: to sca . data types . m i c r o s e r v i c e _ p o r t _ l i s t
requ i red: f a l se

hos t_por t :
d e s c r i p t i o n : Por t which w i l l be exposed on the host , a

random port w i l l get exposed i f i t i s not def ined
type: to sca . data types . network . PortDef
requ i red: f a l se

259

hos t_por t s :
d e s c r i p t i o n : L i s t of por t s which w i l l be exposed on the

host , random por t s w i l l get exposed i f i t i s not
def ined

type: to sca . data types . m i c r o s e r v i c e _ p o r t _ l i s t
requ i red: f a l se

d i r e c t o r y :
d e s c r i p t i o n : Name of the d i r e c to ry , in which the d o c k e r f i l e

i s loca ted
type: s t r i n g
requ i red: true

to sca . nodes . m i c ro se rv i c e s . un ikerne l :
derived_from: tosca . nodes . m i c ro se r v i c e s
d e s c r i p t i o n : Base type fo r un ike rne l mic rose rv i ce d e f i n i t i o n s .

##

Relationship Type.

A Relationship Type is a reusable entity that defines the type

of

one or more relationships between Node Types or Node Templates.

##

r e l a t i o n s h i p _ t y p e s :
to sca . r e l a t i o n s h i p s . docker_bridge_network:

derived_from: tosca . r e l a t i o n s h i p s . Root
d e s c r i p t i o n : Re la t i onsh ip to s e t up a docker user−def ined

br idge network
p r o p e r t i e s :

name:
type: s t r i n g
d e s c r i p t i o n : Name of t h i s br idge network

##

Data Type.

A Datatype is a complex data type declaration which contains

other complex or simple data types.

##

data_types :
to sca . data types . m i c ro se r v i c e_ i o :

derived_from: tosca . data types . Root
type: s t r i n g
d e s c r i p t i o n : a datatype fo r de f in ing the type of an input or

output
c o n s t r a i n t s :

- v a l i d _ v a l u e s : [number , in teger , f l o a t , s t r i ng , t e x t _ f i l e ,
image , l i s t]

to sca . data types . m i c ro se rv i c e_ inpu t s :
derived_from: tosca . data types . Root
type: l i s t
d e s c r i p t i o n : a l i s t of cons t ra ined s t r i n g s to de f ine the input s

of a mic ro se rv i ce
entry_schema:

type: to sca . data types . m i c ro se r v i c e_ i o

260 Appendix B. TOSCA Extension for the Description of Microservices

tosca . data types . mic rose rv i ce_outpu t s :
derived_from: tosca . data types . Root
type: l i s t
d e s c r i p t i o n : a l i s t of cons t ra ined s t r i n g s to de f ine the

outputs of a mic ro se rv i ce
entry_schema:

type: to sca . data types . m i c ro se r v i c e_ i o

to s ca . data types . m ic ro se rv i ce_por t :
derived_from: tosca . data types . Root
d e s c r i p t i o n : d e s c r i p t i o n fo r a port , c o n s i s t i n g of the port

number , protoco l , and a d e s c r i p t i o n s t r i n g
p r o p e r t i e s :

por t :
type: to sca . data types . network . PortDef
requ i red: true

pro toco l :
type: s t r i n g
requ i red: true
d e f a u l t : tcp
c o n s t r a i n t s :

- v a l i d _ v a l u e s : [tcp , udp]
d e s c r i p t i o n :

type: s t r i n g
requ i red: f a l se

to sca . data types . m i c r o s e r v i c e _ p o r t _ l i s t :
derived_from: tosca . data types . Root
d e s c r i p t i o n : a l i s t of por t d e s c r i p t i o n s to de f ine mul t ip l e

por t s
type: l i s t
entry_schema:

type: to s ca . data types . m i c ro se rv i c e_por t

##

Group Type.

Group Type represents logical grouping of TOSCA nodes that have

an implied membership relationship and may need to be

orchestrated or managed together to achieve some result.

##

group_types:
to sca . groups . docker_bridge_network:

derived_from: tosca . groups . Root
d e s c r i p t i o n : Group type to s e t up a docker user−def ined br idge

network
p r o p e r t i e s :

name:
type: s t r i n g
d e s c r i p t i o n : Name of t h i s br idge network

APPENDIX C

TOSCA Extension for the Description of Service Chains1

##

The content of this file reflects TOSCA microservices Profile in

YAML version 1.0.0. It describes the definition for TOSCA

microservice chain types including Node Type, Relationship Type,

Capability Type and Interfaces.

##

t o s c a _ d e f i n i t i o n s _ v e r s i o n :
to s ca_ s imp le_p ro f i l e _ fo r_mic ro se rv i c e_cha in s_1_0_0

##

Node Type.

A Node Type is a reusable entity that defines the type of one or

more Node Templates.

##

node_types:
tosca . nodes . cha ined_microserv i ce :

derived_from: tosca . nodes . Root
d e s c r i p t i o n : base type fo r chained mic ro se r v i c e s
p r o p e r t i e s :

s t o r e _ i d :
type: s t r i n g
d e s c r i p t i o n : s t o r e ID of mic ro se rv i ce to use , has

higher p r i o r i t y than semantic d e s c r i p t i o n
requ i red: f a l se

semant i c_desc r ip t i on :
type: to s ca . data types . s emant i c_desc r ip t i on
d e s c r i p t i o n : semantic d e s c r i p t i o n of mic ro se rv i ce

to use , has lower p r i o r i t y than ID
requ i red: f a l se

1Contribution statement: I led the idea generation and design of the flexEdge framework. The
framework itself was implemented by Martin Wagner as part of this Master thesis [Wag19]. The TOSCA
extension shown here is taken from this implementation.

261

262 Appendix C. TOSCA Extension for the Description of Service Chains

agent:
type: s t r i n g
d e s c r i p t i o n : address of agent to run the s e r v i c e on
requ i red: f a l se

f i r s t _ i n _ c h a i n :
type: boolean
d e f a u l t : f a l se
requ i red: true
d e s c r i p t i o n : i s t h i s mic ro se rv i ce the f i r s t in the

chain (ge t s the input from the c l i e n t)
l a s t _ i n _ c h a i n :

type: boolean
d e f a u l t : f a l se
requ i red: true
d e s c r i p t i o n : i s t h i s mic ro se rv i ce the l a s t in the

chain ? (re tu rn s the output fo r the c l i e n t)
f o r c e _ r e b u i l d :

type: boolean
d e f a u l t : f a l se
requ i red: f a l se
d e s c r i p t i o n : should t h i s mic rose rv i ce con ta ine r be

b u i l t anew?
p o l l i n g :

type: boolean
d e f a u l t : f a l se
requ i red: f a l se
d e s c r i p t i o n : does t h i s mic ro se rv i ce support p o l l i n g

f o r a c t i v i t y ?
new_instance:

type: boolean
d e f a u l t : f a l se
requ i red: f a l se
d e s c r i p t i o n : should the c rea t i on of a new ins t ance

f o r t h i s mic ro se rv i ce be enforced ?
a l i v e_ t ime :

type: i n t e g e r
requ i red: f a l se
d e s c r i p t i o n : overwr i te the a l i v e time of the

mic ro se rv i ce i t s e l f
c a p a b i l i t i e s :

output:
type: to sca . c a p a b i l i t i e s . mic roserv i ce_output
va l i d_ sour ce_ type s : [to sca . nodes .

cha ined_microserv i ce]
requirements:

- input :
c a p a b i l i t y : to sca . c a p a b i l i t i e s . mic rose rv i ce_output
node: to sca . nodes . cha ined_microserv i ce
r e l a t i o n s h i p : to sca . r e l a t i o n s h i p s . m i c ro se r v i c e s .

output_ input
occurrences : [0 , UNBOUNDED]

263

##

Relationship Type.

A Relationship Type is a reusable entity that defines the type

of one or more relationships between Node Types or Node

Templates.

##

r e l a t i o n s h i p _ t y p e s :
to sca . r e l a t i o n s h i p s . m i c ro se rv i c e s . output_ input :

derived_from: tosca . r e l a t i o n s h i p s . Root
v a l i d _ t a r g e t _ t y p e s : [to sca . c a p a b i l i t i e s .

mic roserv i ce_output]

##

Capability Type.

A Capability Type is a reusable entity that describes a kind of

capability that a Node Type can declare to expose.

##

c a p a b i l i t y _ t y p e s :
to sca . c a p a b i l i t i e s . mic roserv i ce_output :

derived_from: tosca . c a p a b i l i t i e s . Root

##

Data Type.

A Datatype is a complex data type declaration which contains

other complex or simple data types.

##

data_types :
to sca . data types . m i c ro se r v i c e_ i o :

derived_from: tosca . data types . Root
type: s t r i n g
d e s c r i p t i o n : a datatype fo r de f in ing the type of an input or

output
c o n s t r a i n t s :

- v a l i d _ v a l u e s : [number , in teger , f l o a t , s t r i ng , t e x t _ f i l e
, image , l i s t]

to sca . data types . m i c ro se rv i c e_ inpu t s :
derived_from: tosca . data types . Root
type: l i s t
d e s c r i p t i o n : a l i s t of cons t ra ined s t r i n g s to de f ine the

input s of a mic rose rv i ce
entry_schema:

type: to sca . data types . m i c ro se r v i c e_ i o

tosca . data types . mic rose rv i ce_outpu t s :
derived_from: tosca . data types . Root
type: l i s t
d e s c r i p t i o n : a l i s t of cons t ra ined s t r i n g s to de f ine the

outputs of a mic ro se rv i ce
entry_schema:

type: to sca . data types . m i c ro se r v i c e_ i o

to s ca . data types . s emant i c_desc r ip t i on :
derived_from: tosca . data types . Root

264 Appendix C. TOSCA Extension for the Description of Service Chains

d e s c r i p t i o n : semantic d e s c r i p t i o n fo r a mic ro se rv i ce from
the s t o r e

p r o p e r t i e s :
ca tegory :

type: s t r i n g
requ i red: true

i nput s :
type: to sca . data types . m i c ro se rv i c e_ inpu t s
requ i red: f a l se

outputs :
type: to sca . data types . mic rose rv i ce_outpu t s
requ i red: f a l se

##

Group Type.

Group Type represents logical grouping of TOSCA nodes that have

an implied membership relationship and may need to be

orchestrated or managed together to achieve some result.

##

group_types:
to sca . groups . docker_bridge_network:

derived_from: tosca . groups . Root
d e s c r i p t i o n : Group type to s e t up a docker user−def ined br idge

network
p r o p e r t i e s :

name:
type: s t r i n g
d e s c r i p t i o n : Name of t h i s br idge network

APPENDIX D

TOSCA Description of the Word Count Service Chain1

t o s c a _ d e f i n i t i o n s _ v e r s i o n :
to s ca_ s imp le_p ro f i l e _ fo r_mic ro se rv i c e_cha in s_1_0_0

d e s c r i p t i o n : Desc r ip t i on of the mic ro se rv i ce chain used fo r the
eva lua t ion .

topology_template:
node_templates:

wordsp l i t :
type: to sca . nodes . cha ined_microserv i ce
p r o p e r t i e s :

s t o r e _ i d : 5d1f4c1c53b89fd219f084c8
f i r s t _ i n _ c h a i n : f a l se
l a s t _ i n _ c h a i n : f a l se
f o r c e _ r e b u i l d : f a l se
p o l l i n g : f a l se

requirements:
- input : echo1

wordcount:
type: to sca . nodes . cha ined_microserv i ce
p r o p e r t i e s :

s t o r e _ i d : 5d1f4c2853b89fd219f084cc
f i r s t _ i n _ c h a i n : f a l se
l a s t _ i n _ c h a i n : f a l se
f o r c e _ r e b u i l d : f a l se
p o l l i n g : f a l se

requirements:
- input : wordsp l i t

1Contribution statement: I led the idea generation and design of the flexEdge framework. The
framework itself was implemented by Martin Wagner as part of this Master thesis [Wag19]. The TOSCA
description shown here is taken from this implementation.

265

266 Appendix D. TOSCA Description of the Word Count Service Chain

echo1:
type: to sca . nodes . cha ined_microserv i ce
p r o p e r t i e s :

s t o r e _ i d : 5d1f4eac53b89fd219f084d6
f i r s t _ i n _ c h a i n : true
l a s t _ i n _ c h a i n : f a l se

echo2:
type: to sca . nodes . cha ined_microserv i ce
p r o p e r t i e s :

s t o r e _ i d : 5d1f4eac53b89fd219f084d6
f i r s t _ i n _ c h a i n : f a l se
l a s t _ i n _ c h a i n : true

requirements:
- input : wordcount

APPENDIX E

Detailed Execution Times of Microservices

This appendix provides the detailed execution times of the microservices, as evalu-
ated in Section 7.6.2.a. Table E.1 lists the average (AVG), standard deviation (SD),
minimum (MIN) and maximum (MAX) values for all evaluation conditions. All
values are given in milliseconds.

TABLE E.1: EXECUTION TIMES OF MICROSERVICES

Microservice

Object detection Face detection Word count

W
iF

i
M

S-
St

or
e

co
ld

st
ar

t AVG 7578.1 1199.6 888.53

SD 164.61 52.34 47.72

MIN 7300 1116 841

MAX 8104 1350 1021

W
iF

i
M

S-
St

or
e

w
ar

m
st

ar
t AVG 1371 387.47 134.43

SD 175.93 38.19 41.11

MIN 1208 310 34

MAX 2060 470 178

W
iF

i
O

ffl
oa

d
co

ld
st

ar
t AVG 10657.2 1194.77 899.37

SD 255.05 48.38 67.59

MIN 10143 1107 837

MAX 11161 1295 1164

W
iF

i
O

ffl
oa

d
w

ar
m

st
ar

t AVG 6212.6 600.17 270.7

SD 315.67 70.76 110.83

MIN 5745 477 161

MAX 7146 719 460

267

268 Appendix E. Detailed Execution Times of Microservices

Microservice

Object detection Face detection Word count

C
el

lu
ar

M
S-

St
or

e
co

ld
st

ar
t AVG 8438.5 2472.2 1049.3

SD 641.21 370.78 55.8

MIN 7565 1944 945

MAX 9957 3696 1211

C
el

lu
ar

M
S-

St
or

e
w

ar
m

st
ar

t AVG 2470.5 1429.13 208.13

SD 447.92 197.46 27.11

MIN 1942 1203 156

MAX 4016 2158 286

C
el

lu
ar

O
ffl

oa
d

co
ld

st
ar

t AVG 46475.23 2747.43 1038.5

SD 15628.61 777.2 67.7

MIN 27095 1690 874

MAX 84904 5077 1185

C
el

lu
ar

O
ffl

oa
d

w
ar

m
st

ar
t AVG 32192.97 1584.97 324.83

SD 10004.54 233.81 42.26

MIN 21776 1285 249

MAX 64972 2163 460

APPENDIX F

Pyomo ILP Model for Operator Placement

LISTING F.1: MODEL.PY SOURCE CODE FILE

1 from __future__ import d i v i s i o n
2 from pyomo . environ import ∗
3 from i t e r t o o l s import product
4
5 def c rea te_abs t rac t_mode l () :
6 model = AbstractModel ()
7
8 model .OPERATORS = Set ()
9 model .NODES = Set ()

10 model .OPEDGES = Set (with in=model .OPERATORS ∗ model .OPERATORS)
11 model .NODEEDGES = Set (with in=model .NODES ∗ model .NODES)
12
13 model . operator_workload = Param(model .OPERATORS, with in=

�→ NonNegat iveIntegers)
14 model . node_capaci ty = Param(model .NODES, with in=

�→ NonNegat iveIntegers)
15 model . opera to r_da ta ra te = Param(model . OPEDGES, with in=

�→ NonNegat iveIntegers)
16
17 model . p lacement_cost = Param(model .OPERATORS, model .NODES,

�→ within=NonNegativeReals)
18 model . d = Param(model .NODES ∗ model .NODES, with in=

�→ NonNegat iveIntegers)
19 model . b = Param(model .NODEEDGES, with in=NonNegat iveIntegers)
20
21 model . p innings = Set (with in=model .OPERATORS ∗ model .NODES)
22 model . p inn ing_opt ions = Set (with in=model .OPERATORS ∗ model .

�→ NODES)
23 model . ex c lu s i on s = Set (with in=model .OPERATORS ∗ model .NODES)
24 model . c o l o c a t i o n s = Set (with in=model .OPERATORS ∗ model .

�→ OPERATORS)

269

270 Appendix F. Pyomo ILP Model for Operator Placement

25
26 model . paths = Set (with in=model .NODES ∗ model .NODES ∗ model .

�→ NODEEDGES)
27
28 model . x = Var (model .OPERATORS, model .NODES, domain=Binary ,

�→ within=Binary , i n i t i a l i z e=0)
29 model . y = Var (model .OPERATORS, model .OPERATORS, model .NODES,

�→ model .NODES, domain=Binary , wi th in=Binary , i n i t i a l i z e
�→ =0)

30
31 model . wr = Param(with in=NonNegativeReals , d e f a u l t=0.5)
32 model .wd = Param(with in=NonNegativeReals , d e f a u l t=0.5)
33
34 def ob j_expres s ion (model) :
35 r = 0
36 d = 0
37 f o r o in model .OPERATORS:
38 f o r n in model .NODES:
39 r += (model . p lacement_cost [o , n] ∗ model . x [o , n])
40 f o r (i , j) in model .OPEDGES:
41 f o r (u , v) in product (model .NODES, model .NODES) :
42 d += model . d[u , v] ∗ model . y [i , j , u , v]
43 re turn (model . wr ∗ r) + (model .wd ∗ d)
44 model . OBJ = Objec t i ve (ru l e=ob j_expres s ion)
45
46 def p inn ing_ru le (model , o , u) :
47 re turn model . x [o , u] == 1
48 model . PinningRule = Cons t ra in t (model . pinnings , ru l e=

�→ p inn ing_ru le)
49
50 def p inn ing_opt ions (model , o) :
51 i f not model . p inn ing_opt ions :
52 re turn Cons t ra in t . F e a s i b l e
53 re turn sum(model . x [o , n] f o r (o , n) in model . p inn ing_opt ions

�→) == 1
54 model . P inningOptions = Cons t ra in t (model .OPERATORS, ru l e=

�→ pinn ing_opt ions)
55
56 def c o l o c a t i o n _ c o n s t r a i n t (model , o , p , n) :
57 re turn model . x [o , n] == model . x [p , n]
58 model . Colocat ionRule = Cons t ra in t (model . co loca t ions , model .

�→ NODES, ru l e=c o l o c a t i o n _ c o n s t r a i n t)
59
60 def e x c l u s i o n _ r u l e (model , o , u) :
61 re turn model . x [o , u] == 0
62 model . Exc lus ionRule = Cons t ra in t (model . exc lus ions , ru l e=

�→ e x c l u s i o n _ r u l e)
63
64 def r u l e _ c a p a c i t y (model , u) :
65 re turn sum(model . operator_workload [o] ∗ model . x [o , u] f o r o

�→ in model .OPERATORS) <= model . node_capaci ty [u]
66 model . Capac i t yCons t ra in t = Cons t ra in t (model .NODES, ru l e=

�→ r u l e _ c a p a c i t y)
67

271

68 def rule_uniqueplacement (model , i) :
69 re turn sum(model . x [i , n] f o r n in model .NODES) == 1
70 model . P lacementConstra int1 = Cons t ra in t (model .OPERATORS, ru l e=

�→ rule_uniqueplacement)
71
72 def network_rule1 (model , i , j , u) :
73 re turn sum(model . y [i , j , u , v] f o r v in model .NODES) == model

�→ . x [i , u]
74 model . NetworkConstraint1 = Cons t ra in t (model . OPEDGES, model .

�→ NODES, ru l e=network_rule1)
75
76 def network_rule2 (model , i , j , v) :
77 re turn sum(model . y [i , j , u , v] f o r u in model .NODES) == model

�→ . x [j , v]
78 model . NetworkConstraint2 = Cons t ra in t (model . OPEDGES, model .

�→ NODES, ru l e=network_rule2)
79
80 def l i n k _ r u l e (model , a , b) :
81 subse t_paths = []
82 f o r u , v , c , d in model . paths :
83 i f (c , d) == (a , b) :
84 subse t_paths . append (tup le ((u , v)))
85 i f not subse t_paths :
86 re turn Cons t ra in t . F e a s i b l e
87 e l s e :
88 re turn sum(sum(model . opera to r_da ta ra te [j , k] ∗ model . y

�→ [j , k , u , v] f o r j , k in model .OPEDGES) f o r u , v in
�→ subse t_paths) <= model . b [a , b]

89 model . LinkRule = Cons t ra in t (model .NODEEDGES, ru l e=l i n k _ r u l e)
90
91 re turn model

APPENDIX G

Problem Sizes for the Operator Placement Evaluation

This appendix details how the input sizes for the evaluation of the operator place-
ment heuristics (see Section 8.6) are constructed. Table G.1 shows how many op-
erator graphs of each type (following the numbering a–m as in Figure 8.5) are
contained in the input sizes g1–g11.

TABLE G.1: NUMBER OF OPERATOR GRAPHS PER INPUT SIZE

Input sizes

gs
1

gs
2

gs
3

gs
4

gs
5

gs
6

gs
7

gs
8

gs
9

gs
10

gs
11

O
pe

ra
to

r
gr

ap
hs

a 2 2 2 2 2 2 2 2 2 2 2

b 1 1 1

c 1 1 1 1 1

d 1 1 1 1 1 1 1 1 1 1

e 1 1 1 1 1 1 1 1 1 1 1

f 1

g 1 1 1 1 1 1 1 1

h 1 1 1 1 1 1

i 1 1 1 1

j 1 1 1 1 2 2 2 2 2 2 2

k 1 1 1 1 1 1 1 1 1

l 1 1 1 1 1 1 1 1 1 1 1

m 1 1

273

APPENDIX H

Questions of the Survey on Mobile Storage1

Q1: How old are you?

1 31 17 1 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

< 18 18-25 26-35 36-45 > 45

Q2: Which of these devices do you own?

Smartphone

Tablet

Laptop

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Yes No

46 5

28 23

51

1Contribution statement: I led the design of the questionnaire and the analysis of the results. The
survey itself was carried out by Nicolás Himmelmann as part of this Bachelor’s thesis [Him17].

275

276 Appendix H. Questions of the Survey on Mobile Storage

Q3: How often do you use your smartphone on an average day?

24 17 10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Very frequently Frequently Occasionally Rarely Very rarely Never

Q4: How often do you use your other mobile devices (e.g., laptop or tablet)
on an average day?

15,7% 39,2% 31,4% 11,8% 2%

0 10 20 30 40 50

Very frequently Frequently Occasionally Rarely Very rarely Never

Q5: What is your monthly data plan?

4 3 2 12 9 9 3 4 5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

< 200MB 200-300MB 301-500MB Up to 1GB Up to 2GB

Up to 3GB Up to 4GB More than 4GB I don't know

Q6: How often do you exceed this data plan?

5 6 11 10 19

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Almost always Often Sometimes Seldom Never

277

Q7: How often do you use public WiFi networks?

0 % 1 23 24 5

67 267 367 467 567 867 067 %67 967 167 2667

Very frequently Frequently Occasionally Rarely Very rarely Never

Q8: How often do you capture data of the following types with your mobile
device?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Several times per day Daily Several times per week Occasionally Seldom Never

2 3 5 24 15 2

4 5 7 15 12 8

3 2 9 16 16 5

1 6 7 10 23 4

8 8 17 14 4Photo

Video

Document

Contact

Other

Q9: How often do you share data of the following types with your mobile
device?

Phot V

i VdeD t cu

mVcundu

0

%

1

1

2

3

4

5

6

03

07

03

18

03

01

18

11

01

03

2

07

08

08

07

0

89 089 189 789 389 489 %89 589 689 289 0889

St vt rnl uhD t s pt r ony i nhly St vt rnl uhD t s pt r wt t k OddnshVcnlly St loVD Nt vt r

CaVuV

Ouat r

278 Appendix H. Questions of the Survey on Mobile Storage

Q10: Which of the following services do you use?

Snapchat

Instagram

Twi er

1

1

2

3

4

4

5

13

38

1

3

3

6

2

8

3

1

3

6

2

9

2

2

4

5

6

3

5

11

17

1

3

1

3

1

2

3

14

4

11

6

2

2

6

45

39

18

43

8

35

34

37

16

3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Several times per day Daily Several times per week Occasionally Seldom Never

WhatsApp

Facebook

OneDrive

Dropbox

Google Drive

Pinterest

OwnCloud

Q11: Which of these services I use depends on whether I want to share the
data or store it for private use.

7 26 13 3 2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Strongly Agree Agree Undecided Disagree Strongly Disagree

Q12: Which of these services I use depends on my current location.

7 26 1 77 6

30 730 230 %30 430 630 530 830 930 130 7330

Strongly Agree Agree Undecided Disagree Strongly Disagree

279

Q13: Which of these services I use depends on the time of the day or the day
of the week.

7 77 2 61 3

0% 60% 70% 40% 20% 50% 30% 10% 80% 90% 600%

Strongly Agree Agree Undecided Disagree Strongly Disagree

Q14: How often do you upload the same data (e.g., a photo or a document) to
more than one service?

0 % 01 02 02 3

45 045 145 245 %45 645 745 845 345 945 0445

Very frequently Frequently Occasionally Rarely Very rarely Never

Q15: If so, for which purpose?

2

38

20

49

13

31

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Yes No

Backup of the data

Sharing the data
with others

Other

Q16: How often do you experience considerable delays when retrieving files
in mobile networks?

On cellular

In Wi 2 16 20 9 3 1

1 8 19 10 11 2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Very frequently Frequently Occasionally Rarely Very rarely Never

1 8 19 10 11 2

2 16 20 9 3 1

280 Appendix H. Questions of the Survey on Mobile Storage

Q17: How often do you share data at an event?

0 % 12 3 14 2

56 156 456 756 056 256 856 %56 356 956 1556

Very frequently Frequently Occasionally Rarely Very rarely Never

Q18: Did you experience times where the network was overloaded at an event?

5 66 10 9 1

%2 6%2 1%2 5%2 3%2 4%2 0%2 7%2 8%2 9%2 6%%2

Almost always Often Sometimes Seldom Never

Q19: Do you retrieve data related to this event (e.g., photos/videos) while you
are there?

5 61 56 65 0

19 619 519 %19 219 319 019 419 719 819 6119

Almost always Often Sometimes Seldom Never

Q20: How often do you share data with others that are also present at the
same event?

5 6 10 91 90

0% 90% 10% 50% 20% 30% 60% 40% 70% 80% 900%

Almost always Often Sometimes Seldom Never

APPENDIX I

Implementation Details of vStore1

FIGURE I.1: CLASS DIAGRAM OF THE VSTORE FRAMEWORK

1Contribution statement: I led the idea generation and design of the vStore framework. The
framework itself was implemented by Nicolás Himmelmann as part of this Bachelor’s thesis [Him17].
The figures in this appendix are taken from this thesis.

281

282 Appendix I. Implementation Details of vStore

FIGURE I.2: DATABASE SCHEME OF THE SQLITE DATABASE ON THE MOBILE CLIENT

APPENDIX J

Example Class Diagram of an Adaptable Microservice1

FIGURE J.1: UML CLASS DIAGRAM OF THE ADAPTABLE FACE DETECTION MICROSER-
VICE

1Contribution statement: I led the idea generation and design of the system for adaptable microser-
vices. The student assistant Karolis Skaisgiris was involved in developing a prototype implementation.
The class diagram shown in this appendix is taken from this implementation.

283

APPENDIX K

Wissenschaftlicher Werdegang des Verfassers

2007–2013 Studium der Informatik an der TU Darmstadt
Abschluss: Bachelor of Science

2013–2015 Studium der Informatik an der TU Darmstadt
Abschluss: Master of Science

2016–2020 Wissenschaftlicher Mitarbeiter am Fachgebiet Telekooperation
des Fachbereichs Informatik an der TU Darmstadt

285

