
Sunstone: Navigating the Way Through the Fog
Julien Gedeon, Sebastian Zengerle, Sebastian Alles, Florian Brandherm, Max Mühlhäuser

Telecooperation Lab, Technische Universität Darmstadt, Germany
Email: {gedeon, zengerle, alles, brandherm, max}@tk.tu-darmstadt.de

Abstract—Fog Computing extends Cloud Computing by plac-
ing resources in the core network between cloud resources and
(mobile) users. While a lot of frameworks to implement Fog
Computing have been proposed, most do not consider loose
coupling between federated fog resources. In such environments,
the scalable discovery and orchestration of fog resources across
multiple administrative domains and autonomous systems re-
mains a challenge.

In this paper, we present Sunstone1, a discovery mechanism for
Fog Computing that works on Internet-scale by combining on-
path and off-path discovery mechanisms. Leveraging protocols
present in the global routing infrastructure, Sunstone operates
across multiple fog-domains while requiring no modifications to
existing network middleboxes in the transit network. Further-
more, Sunstone includes a customizable orchestrator, which—
given the results of the discovery process and application-specific
policies—allows for a QoS-aware placement of applications in the
fog.

Index Terms—fog computing, edge computing, mobile edge
computing, discovery, orchestration

I. INTRODUCTION

The advent of applications that generate large streams of
data or for which processing latency is critical has led to the
emergence of Fog Computing [1], [2] and—denoting a similar
concept—Edge Computing [3], [4]. Example use cases include
the processing of IoT data [5], Augmented Reality [6], Virtual
Reality [7] and connected cars [8]. Fog Computing leverages
resources in close proximity to the end user for computation
offloading and, therefore, this new paradigm bridges the gap
between local, customer-owned networks and distant Cloud
Computing infrastructures. Fog sites provide computing and
storage resources, and support multi-tenancy and isolation via
lightweight virtualization, e.g., through containers [9]. Besides
lower end-to-end latency, Fog Computing can also reduce the
bandwidth utilization in core and transit networks.

Following this trend, several frameworks and architectures
for Fog Computing have been proposed [10]–[13]. The IEEE
recently defined a standard to adopt the OpenFog reference
architecture for fog computing [14]. The reference architecture
describes an approach with a hierarchical fog deployment
model. This model allows the combination of fog and cloud
deployments by defining the interactions between them. More-
over, it defines the usage of multiple fogs in the same
deployment model. In such a fog architecture, two problems
need to be addressed: (i) the discovery of fog resources, and
(ii) the orchestration of those resources. To leverage resources

1According to the icelandic allegory Rauðúlfs þáttr, a device called Sunstone
was used in medieval times as a navigation aid in overcast skies.

Cloud Fog

Fog

AS1

AS2

AS3

Fog-to-Fog
interface

Fog-to-Cloud
interface

User-to-Cloud 
interface 
through Fog

Us
er

-to
-F

og
 

in
te

rfa
ce

User / Thing
ForchestratorForchestrator DiscoveryAgent

Fog

Fog

Fog

Fog

Figure 1. Reference Architecture of Federated Fogs in Different Autonomous
Systems

between the cloud and the user, a multitude of fog sites
in different autonomous systems (ASes) on the path from
the user to the cloud should be taken into account. These
networks are owned by various stakeholders, such as ISPs,
other companies, or private customers. This leads to a loosely
coupled n : m : o relationship between users, fog resources,
and cloud resources. Enabling a loose coupling between users
and fogs is crucial to enable new business opportunities, in
which different stakeholders (e.g., ISPs, network operators,
cloud providers, hardware manufacturers) can offer computing
resources. Federation between the different users and resources
across administrative domains requires the definition of several
interfaces. Figure 1 shows this general architecture of federated
fog sites and the different interfaces for interaction between
the cloud, fogs, and users.

This reference architecture does not match today’s reality,
where we mostly see single-cluster solutions [11] or centralized
approaches [10], [15], [16] that are tightly coupled in the
sense that they expect a direct relationship between the service
running in the fog and the user end device. In addition,
most existing frameworks focus mainly on the orchestration
part. Regarding discovery, some assume that all available
fog sites are known a priori and do not change [10]–[12].
However, due to the global scale, it is impossible to provision
all parties with information about all fog sites. Furthermore,
Fog Computing is inherently dynamic in the sense that fog
sites may join and leave the network opportunistically. Other
approaches implement discovery mechanisms that are based
on broadcast [17], multicast [18] or centralized databases [19].
Those are either not scalable or—in the case of multicast—
incompatible with today’s global routing infrastructure. Peer-
to-peer approaches, on the other hand, suffer from topology



mismatch, i.e., they create overlay topologies that do not
correlate with the physical network topology. This jeopardizes
the potential benefits of Fog Computing because no sensible
placement decisions can be made for applications that have
stringent constraints on the quality of service (QoS), e.g.,
with regards to latency. In conclusion, today no discovery
mechanisms exist, which are globally scalable, support loose
coupling, and consider the physical topology of the network.

In this paper, we present Sunstone, a novel approach for the
joint discovery and orchestration of Fog Computing resources.
Sunstone finds resources in the fog between users and clouds by
combining three different discovery mechanisms, using both on-
path and off-path discovery. It does so while being compatible
with existing middleboxes and leveraging only protocols used
in the global Internet (e.g., DNS and BGP). Hence, fog sites
on the entire spectrum between cloud and users and residing in
different autonomous systems can be discovered. Furthermore,
Sunstone is globally scalable and supports loose coupling to
dynamically leverage in-network fog resources. As a second
contribution, Sunstone includes an orchestration component
that manages the topology of deployed resources according to
customizable policies. To the best of our knowledge, this is the
first discovery and orchestration mechanism for fog resources
that is globally scalable, supports n : m : o relationships
between users, clouds and fogs, and jointly uses on-path and
off-path discovery mechanisms while considering the physical
topology of the network to ensure QoS.

In summary, this paper makes the following contributions:
• We propose a scalable discovery mechanism for fog

resources across multiple administrative domains by
combining on-path and off-path approaches.

• We embed our discovery mechanism in an end-to-end
orchestrator for the deployment of services in the user-fog-
cloud continuum. The orchestrator provides a framework
to define custom policies that are used for the placement
decision of services following the results of the discovery
process.

• We demonstrate the viability of our approach in a global
network environment. We conduct a large-scale empirical
study to report on the ability of Sunstone to find fog
sites and quantify the overall benefit in terms of reduced
end-to-end latency.

The remainder of this paper is structured as follows. We
provide background information and review related work in
Section II. Section III presents our approach with implemen-
tation details given in Section IV. We report and discuss our
results in Section V and conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

A. Mobile Cloud Computing, Fog Computing, and Edge
Computing

Offloading computations is especially beneficial for mobile
devices because of their limitations with regards to available
resources and battery life [20], [21]. Traditionally, this has
been done via Mobile Cloud Computing (MCC), i.e., by

leveraging public or private cloud resources [22]. However,
emerging classes of applications require ultra-low latency and
generate vast amounts of data—both of which prohibit the
usage of cloud resources. For these reasons, the concepts of Fog
Computing [1], [2] and Edge Computing [3], [4] have emerged.
These paradigms aim to place resources close to (mobile) clients
and hence, reduce the end-to-end latency and bandwidth stress
in core networks. An extensive survey, outlining both concepts
of Fog and Edge as well as their potential applications can
be found in [3]. For the remainder of this paper, we assume
that Fog Computing covers all available computing resources
between user end devices and cloud infrastructures. Closely
related is the concept of cloudlets [23]—small-scale data centers
that offer proximate computing resources.

A number of frameworks have been proposed to offload
computations to nearby resources, many of which are targeted
at specific classes of applications. For example, Dupont et
al. [12] present a platform for the migration of IoT functions
across the cloud, edge and IoT gateways. Golkarifard et al. [24]
develop an offloading system for wearable computing. Others
focus on the specific access networks, inside of which functions
are offloaded, e.g. cellular [13] or WiFi [25]. Our discovery
and orchestration approach takes a holistic view and is not
restricted to a specific offloading framework.

B. Discovery

The discovery of resources and available devices has been
well-studied in the field of web services [26] and the Internet
of Things (IoT) [27]. For web services, some approaches use
broadcast and multicast, e.g., WS-Discovery2 and Jini/Apache
River3. Since these solutions have similar scalability require-
ments to fog discovery, different approaches were developed
which are using centralized repositories. One example is
UDDI [19], which does discovery by means of a central
database. Federation is implemented on the client-side, who
have to search in all registries. This approach is very forward-
looking but still lacks the ability to have complex queries
related to the topology (e.g., in terms of expected latency or
bandwidth), which are required to find the best-suited fog node.
UDDI merely provides simple queries on individual fields (e.g.,
location, business, or provider).

Cheng et al. [28] propose a framework for the programming
of IoT services. Based on the NGSI standard4, their approach re-
lies on a centralized repository for discovery, to which services
have to register. Klauck et al. [29] and Antonini [30] leverage
multicast DNS. Some decentralized approaches exist [31], [32],
but they focus mostly on the definition of information models.
Moreover, in contrast to our approach, they neither leverage
DNS as a globally scalable and decentralized database nor BGP
as an information-exchange protocol to advertise fog sites as
part of prefixes in the Internet. Instead, those approaches create
their own hierarchical repositories.

2http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-1.1-
spec-os.html (accessed: 2020-01-26)

3https://river.apache.org/ (accessed: 2020-01-26)
4http://www.openmobilealliance.org/release/NGSI/ (accessed: 2020-01-26)



The context for resource discovery in Fog Computing is
totally different from that of web services and IoT. One large
difference is that an intelligent discovery method has to work
on a global scale. This prevents the usage of protocols that
use broadcast (e.g., Multicast DNS) and the native discovery
methods of wireless communication protocols, e.g., Bluetooth
SDP [17]. Daza et. al propose hierarchical blockchains for IoT
discovery [33], which rely on broadcast messages and therefore
have limited scalability.

Some existing discovery approaches are targeted at Fog
Computing. Closest to our work is the work of Zavodovski et
al. [34]. Their discovery mechanism uses the SRV record of
DNS to indicate locations of edge servers. In the first phase,
the SRV records are retrieved from every domain returned by
a traceroute. In the second phase, the services are onloaded
to discovered edge servers. However, no details about the
placement and orchestration mechanisms are provided. Using
the SRV resource records is also less powerful compared to the
NAPTR records we use. Furthermore, the presented approach
relies on a centralized inter-domain orchestration and only
supports on-path DNS zones. Similarly, AirBox by Bhardway
et al. [15] and MIDAS by Abujoda et al. [16] also rely on a
centralized repository.

Another approach to discovery is the use of overlays, as
generated by peer-to-peer (P2P) and publish/subscribe protocols.
For example, Gedeon et al. [35] propose to distribute available
surrogates for Edge Computing on wireless home routers using
Distributed Hash Tables (DHTs). DHTs are also used for
P2P routing in information-centric networks (ICN) [36]. This
approach has limitations regarding the discovery of the first
hop, which has to be configured manually. More importantly,
overlay networks typically do not correlate with the underlying
physical topology. Hence, the overlay network cannot represent
properties of the underlay, e.g., the latency on network links,
which are crucial to make sensible placement decisions for fog
applications.

C. Orchestration

Fog Computing to a great extent relies on container-based
virtualization to achieve both isolation and multi-tenancy of
application components [37]. Kubernetes5 has emerged as the
predominant orchestration tool for containers as of today. While
Kubernetes recently was extended to support the management
of multiple clusters6, it still falls short in enabling a loosely
coupled federation of resources between multiple clusters or
even the dynamic discovery of unknown clusters. Therefore
this solution does not scale well. Furthermore, Kubernetes does
not take into account the location of the users for the placement
decision.

EdgeNet [10] is a globally distributed Kubernetes cluster
running on a large number of nodes spread over multiple
continents. EdgeNet is physically distributed but logically
represented by a single cluster running in a single administrative

5https://kubernetes.io/ (accessed: 2020-01-11)
6https://github.com/kubernetes-sigs/kubefed (accessed: 2020-01-22)

domain. Each participant is considered as a namespace part
of the entire cluster and runs containers on multiple nodes.
Since a single cluster under one administrative domain is
used, the solution contradicts the actual architecture of the
Internet, which is based on distributed autonomous systems
and split administrative responsibilities. KubeEdge [11] is
another example of a single-cluster solution. In summary, both
EdgeNet and KubeEdge rely on centralized controllers, while
the compute nodes are physically distributed. Another proposed
approach is to use a special proxy inside Kubernetes, which
mitigates the shortcoming of missing proximity-aware traffic
routing [38]. This solution also relies on a central controller. In
contrast, Sunstone is a framework for distributed and loosely
coupled discovery and orchestration of resources over multiple
administrative domains.

III. SUNSTONE: SCALABLE DISCOVERY AND
ORCHESTRATION FOR FOG COMPUTING

In this section, we describe the main contributions of
Sunstone. A distributed discovery agent uses a combination of
three approaches to find available fog resources. The result of
the discovery is the basis for the subsequent orchestration that
ultimately determines where applications are run. To do so, the
applications’ placement policies are mapped to the properties
of the discovered resources. This high-level system overview
of Sunstone is shown in Figure 2.

Discovery Orchestration

Snooping DNS BGP

Discovery Agent Policy Mapping
Service 

Placement

Sunstone

Discovery
results

App placement
policy

Figure 2. Overview of Sunstone

A. Discovery

For our discovery mechanisms, we use both on-path and
off-path approaches. We start from the assumption that an
application requested by a user runs in the cloud. In search
of a suitable fog site, both the cloud and the users can be the
initiator of the discovery procedure by issuing an API call to
the discovery component of Sunstone. The actual discovery is
carried out by a discovery worker process running in the cloud
where the user’s application is located.
On-path discovery: On-path discovery finds fog sites located
on the actual network path taken between users and their cloud
applications (Figure 3(a)). Hence, these fog sites are located on
network middleboxes that are involved in the forwarding and
routing process of the application’s payload between the user
and cloud. This approach reflects the deployment model in
Cisco’s initial vision of Fog Computing [2], where networking
hardware (e.g., routers) make extra resources available to
carry out computations. Another example is customer-premises



ISP AS Tier-1 AS Cloud Provider

User Cloud
Application

Another AS

Traffic PathFog

(a) On-path

ISP AS Tier-1 AS Cloud Provider

Another AS

User
Fog

Cloud
Application

Traffic Path

(b) Limited off-path

ISP AS Tier-1 AS Cloud Provider

Another AS

User Traffic Path

Fog

Cloud
Application

Traffic Path

(c) Full off-path

Figure 3. Discovery Approaches

equipment (CPE), e.g., one’s home gateway. On-path discovery
is done by sending probe packets that are recognized and
answered (snooping) by network middleboxes that host a fog
site. Because most of this hardware is optimized for quick
forwarding of incoming packets, we consider a special case
to also be on-path, namely when the middlebox does not
process the traceroute packets itself, but is able to duplicate
and forward them to a snooper. As an example, routers can
efficiently implement this using the 5-tuple rules7.
Off-path discovery: In contrast, the scope of off-path
discovery mechanisms is beyond this direct user-to-cloud path.
We call mechanisms that restrict the discovery to fog sites
residing within the autonomous systems on the direct path
limited off-path (Figure 3(b)). Limited off-path discovery can,
for example, find fog sites that are strategically placed in the
backbone of an ISP. In full off-path discovery (Figure 3(c)),
we can also discover fog sites that are located in autonomous
systems not traversed on the direct path.

Both of these approaches have particular challenges. In
on-path discovery, we first have to accurately construct the
path that requests take. Intermediate network middleboxes on
the path, such as ECMP load balancers or network address
translators make this path non-trivial to determine. For off-path
discovery, we need to build a network graph that traverses
other autonomous systems, starting from the user-to-cloud path.
This is challenging, given the global extent of the Internet. On
one hand, to retain the potential benefits of Fog Computing,
it might not seem sensible to extend the search for a fog site
beyond the path length of the user’s initial connection to the
cloud. On the other hand, logical paths in autonomous systems
do not necessarily correspond to the actual routing connections,
as we will outline in Section V-D.

Sunstone jointly uses three discovery mechanisms, combin-
ing on-path with off-path discovery: (i) Snooping of traceroute

7source IP, destination IP, source port, destination port, transport protocol

Table I
MECHANISMS FOR ON-PATH AND OFF-PATH DISCOVERY

Snooping DNS BGP
On-path 3

Limited off-path 3
Full off-path (3) 3

packets, (ii) DNS NAPTR record information, and (iii) BGP
community string advertisement. These three mechanisms are
run subsequently and the results are aggregated at the discovery
worker. Table I shows which mechanisms are used for which
class of discovery approach. Snooping is used to find on-path
fogs, while DNS is mainly used for limited off-path discovery.
For full off-path discovery, BGP is used to discover ASes
that contain a fog site, while DNS is used as an auxiliary
mechanism to validate and enrich the discovery.

1) Traceroute snooping: Our first mechanism discovers fog
sites on the direct path between the user and the cloud by
snooping packets that we send on this path. For this, we
carry out a variant of a traceroute from the cloud to the
user. Traceroute tools determine which paths packets take in a
network for a given destination. By incrementally increasing
the TTL field in IP packets, traceroute eventually finds all hops
on this path. Contrary to other approaches [16], this approach
does not require any modifications to network middleboxes.
To realize the discovery, we introduce a custom payload in the
traceroute packets. Snoopers on fog sites along the path that
receive such a traceroute packet in turn reply with a message
containing information about the fog site. We describe the
detailed implementation of our traceroute and the messages in
Section IV-A.

2) DNS NAPTR record information: For each intermediate
hop returned by the traceroute, we trigger our second discovery
mechanism that finds fogs that are off-path but on-AS path.
We suggest to provision information about fog sites within
an AS via the Naming Authority Pointer (NAPTR) resource
record (RR) of the Domain Name System (DNS). The hierar-
chical approach of the DNS infrastructure provides enormous
scalability, making it a suitable decentralized database for
fog sites. Traditionally, NAPTR records are used to translate
E.164 telephone numbers to SIP URIs. Another use case is
to determine different services, e.g., SIP via TLS or SIP for
a telephone number. The service field of the NAPTR record
can be provisioned with different values in different RRs to
provide multiple service entry points, depending on the users’
service selection. It is also possible to rewrite records with
regular expressions, making NAPTR more flexible compared
to other types of resource records, e.g., SRV.

For the DNS-based discovery, we first translate all IP
addresses from our raw traceroute results to the respective
AS number by using raw BGP update messages. Using PTR
records, the network is resolved to its name. Afterward, we
use NAPTR records to enrich the network of the intermediate
hop with information about fog sites. This means that if our



traceroute traverses a hop, we first aggregate the IP to its CIDR
network. By performing a reverse lookup on PTR records, we
translate the network CIDR-block to its name. NAPTR records
are used to attach metadata such as API endpoints of fog sites,
their type, distance and further information to this network.
Listing 1 shows an example of a NAPTR record, containing
the name of the resource, the Internet (IN) and NAPTR type,
a priority value, a weight for load-balancing, the response type,
and the used service (sunstone-k8). In our example, the
response type is an SRV record to allow dynamic port numbers
for different API endpoints. The service field is used to allow
different types of services (e.g., a Kubernetes cluster).

1 daFogNetwork.tk.tu-darmstadt.de.
2 IN NAPTR 10 100 "S" "sunstone-k8" ""
3 darmstadtFog.tk.tu-darmstadt.de.

Listing 1: Example NAPTR Resource Record

3) BGP community string advertisement: Lastly, we use
an extension of the Border Gateway Protocol protocol (BGP)
to realize full off-path discovery. DNS-Discovery limits us to
on-path discovery because only intermediate hops between user
and cloud can be used to advertise fog sites. A naive approach
could be taken by using DNS to crawl over all domain names
of all hops. However, this clearly does not scale. Therefore
we propose to use BGP as another method to announce off-
path networks containing fog resources. BGP is the standard
protocol to exchange routing information between ASes. BGP
uses tables that contain CIDR-prefixes and the respective path
through ASes one needs to traverse. Besides this information,
another feature of BGP are community strings [39], which
provide additional information about prefixes to BGP peers in
the form ASN:Value, where ASN is the unique number of
the autonomous system and Value is a numerical value that
represents the community. The community string is used to
provide the network with metadata about other peers. This is
done by sending a BGP update message to all neighbors. This
information can, for instance, be used to implement certain
routing policies. We suggest using this community string to
advertise the presence of a fog site in an AS via a specific fog
community string. More specifically, we use large communities
[40]—an extension to the standard that lowers the probability
of collisions—to tag a CIDR-prefix if it contains a fog site.
The prefix containing fog sites is announced by a BGP peer
on the Internet. Since the community string which is used as
a tag is transitive, all peers will forward the prefix with the
tag and thus make the information about the available fog site
globally known.

Community strings by themselves have no fixed semantic
meaning, although certain best practices exist, e.g., certain
numerical ranges represent specific types of information and
so-called well-known community strings exist. For a practical
deployment of our approach, we suggest that a specific fog
community string be standardized as a well-known community.
Community strings are further limited by the amount of

Table II
SCOPE OF FOG SITES DISCOVERY FOR DIFFERENT VALUES OF K

k Scope of discovery
1 AS of the user
2 Neighboring ASes

d(user, cloud) ASes not further away than the cloud
∞ Global Internet

information they can convey. Therefore, DNS is also part
of this discovery mechanism. If a fog community string is
announced for an AS, a DNS query as described before is
issued. This is done to ensure two things: (i) it validates the
presence of a fog site (in case the fog community string was
used by a third party for another purpose) and (ii) it provides
us with the necessary information to access the fog site, e.g.,
its API endpoint. During the discovery procedure, a list of
all tagged networks (i.e., networks for which a fog site has
been announced via a community string) is used to discover
off-the-path fogs. How many ASes should be traversed is
determined by a parameter k. The k-value is equal to the AS
path length. This naturally forms a tradeoff. For low values of
k, we might miss suitable fog sites, while large values of k
result in potentially unnecessary overhead. Table II shows the
scope of the discovery for selected values of k.

B. Orchestration

The orchestration component manages the topology and
lifecycle of fog applications, such as their creation, update,
and deletion. Most importantly, it is responsible to make
placement decisions, i.e., to determine where applications
are run. Because a single application can consist of multiple
components, those have to be interconnected (e.g., by making
them addressable) using a topology management function. To
orchestrate resources, our orchestrator takes two inputs: (i) the
results of the discovery and (ii) an application descriptor. The
application descriptor contains the application’s components
(e.g., containerized services) and specifies a placement policy.

The policies are the core of the decision-making process for
the placement and contain constraints and optimization goals
for the placement. For example, an application’s policy could be
to select the fog site with the lowest latency to the user. Another
policy could be used to aggregate data at an optimal location,
such as determining the average sensor measurement data. One
such use case is sensors that gather environmental data. At
certain locations, depending on the aggregation function and
amount of data, different sensor readings should be aggregated
inside the network at fog sites. Based on the location of all
fog sites, the best aggregation points are determined by using
a tree data structure. In this tree, all sensors are represented
as leaves, while fog sites are inner nodes. The selection of
suitable fog sites is done by traversing the tree and aggregating
a defined set of sensors on each node, based on data attributes
(e.g., the minimum and maximum of sensors per fog).

We can further distinguish policies by the (single- or
multi-) tenancy of users and applications. Especially for multi-



application policies, one of the core tasks of our orchestration
is to manage the topology that interconnects all application
components. We will outline examples in Section IV-B.

In detail, the orchestration process for deploying applications
on a fog site consists of the following steps:

1) Enrichment of discovery metadata: The different discov-
ery mechanisms as described in Section III-A do not only
find available fog sites but already collect latency data
on the paths between the cloud and users. Since various
policies exist, which differ in their decision metrics,
more measurements must be run. Those are for example
bandwidth measurements (e.g., for bandwidth-intensive
applications) or simply counting the number of devices
that traverse a single hop (e.g., for the aggregation
of sensor data). This measurement data is loaded as
metadata into the discovery result set.

2) Policy mapping: Each application can use its own policy,
which describes how to place services across fogs. In
the first step, our policy mapper filters unwanted results.
These can be fog sites that are incompatible wrt. the
required execution environment or not commercially
viable. Afterward, measurements are executed to extend
the metadata with user-experienced metrics. The type of
measurement is determined by the used policy. As an
example, for a latency-critical application, this step will
add the minimum, maximum and mean latency for each
discovery result.

3) Service placement: During the service placement step the
decision is taken where to run which service. With the
extended result from the policy mapper, each application
component is planned to be placed at the best-suited fog
site. Lastly, the planned orchestration result is executed.
Sunstone supports different types of execution environ-
ments (e.g., Kubernetes or OpenStack) and therefore
carries out the placement in two steps. The first step is
technology-agnostic and abstracts implementation details,
while the second step is specific to the actual execution
environment.

Besides this placement functionality, the orchestrator exposes
an API to manage the lifecycle of already running applications.
One of the operations is to delete an application, either at all
sites or just decommission some deployed fog sites. Another
kind of operation is to update existing applications, for example
in an aggregation use case to make the grouping broader or
denser.

IV. IMPLEMENTATION DETAILS

We realize the concepts described in the previous section
in a reference implementation. A high-level overview of the
system architecture is shown in Figure 4. The main components
are realized as a collection of six microservices (depicted as
rectangles). In addition, we use a message queue (RabbitMQ)
for communication and a database (etcd3) to persist runtime
data. In addition, BGP and DNS data is used as auxiliary
information for the discovery. All microservices are written in
Python 3 using Flask as a framework. Low-level code, such as

DiscoveryAgent
Forchestrator

Snooper

k8agent

DiscoveryWorker

Rabbit
MQ

BGP
Data

DNS
Data

etcd3

Kubernetes API

etcd3
RESTful API

RESTful API

RESTful API

Traceroute

TCP

TCP

Fog Sites

ApplicationApplication

Figure 4. Implemented System Architecture

raw network operations, is written in C++ and integrated into
Python using Boost.Python. Our system architecture consists
of two functional domains. The first one is the discovery
functionality (colored in light blue), which can also be used
independently. The task of this function is to discover new fog
sites. The second is the orchestration functionality (colored
in light green), which is responsible for orchestrating the
discovered resources according to the respective application
policy. Furthermore, this part also carries out additional
measurements that might be required by placement policies. It
is important to note that applications can consist of multiple
components that are to be placed on fog resources. The
orchestrator requires a technology-dependent component to
interact with the runtime environment at the particular fog
site. Our reference environment for running components is
Kubernetes. Therefore, a distributed service of the topology
function (k8agent) is run on the fog site.

As can be seen from Figure 4, each of the two function-
ality domains is composed of multiple microservices. The
microservices running at a fog site (denoted by a dotted
rectangle) are fully decentralized. Each application needs a
decision logic (e.g., composing the policy), which runs on
a centralized controller. The application workload itself is
distributed across different fog resources. Each cloud site can
run a set of centralized controller components, which run
multiple applications. Fog sites are shared between controllers,
to allow for global scalability. Different applications (that also
could be managed by different central controllers) can share fog
resources (fog multi-tenancy). Controllers share the same pool
of fog resources, while being logically isolated and not allowed
to access the resources of other controllers or even different
apps. The composition of multiple centralized components on
the cloud sites (n clouds), using different fog sites (m fogs
shared with up to n clouds) and providing services to o user
leads to the n : m : o-relationship of those entities as described
in our reference model (see Figure 1).

A. Discovery Function: Discovery Agent, Discovery Worker,
and Snooper

The discovery agent is mainly used as RESTful API
front end to access all discovery-related functions from other
microservices. Etcd3 is used as a backend to persist requests
and aggregate the results of the discovery process. The



actual discovery process is executed by the discovery worker.
The distributed coordination of discovery jobs is done by
means of RabbitMQ and Python-Celery while coordination
of distributed locks and storage is the task of an etcd3
database. The core functionality of the discovery process is to
invoke traceroutes and perform the subsequent discovery steps
(see Section III-A). Traceroute is a mechanism to determine
the actual paths that packets take in a network [41]. Basic
traceroute implementations follow a naive approach to gather
path information in small networks. They neglect the existence
of NAT (Network Address Translation) and ECMP (Equal-
Cost Multi-Path), which are very common in today’s networks.
In practice, this might lead to false-positive links [42]. For
these reasons we choose to use Dublin Traceroute8 for our
implementation, a variant that is able to detect NATs and does
not have problems with NAT middle-boxes not according to
standards. Our snooper detects traceroute packets from the
cloud to the user and does not provide any invocable API.
The snooper evaluates the payload of traceroute packets and
returns the fog data to the discovery agent’s API, which is
specified in the packet. The packets have a specific payload,
which contains the API endpoint of the discovery agent, the
API version and a unique ID to refer to a running discovery
process. The payload is encoded using ProtoBuf. Since our
discovery solution can be used for different use-cases and fog
execution environments (e.g., Kubernetes or OpenStack), the
response contains the type of the discovery fog, as well as the
distance from the cloud to that fog site and the API endpoint
to reach the discovered fog site.

B. Orchestration Function: Forchestrator and K8agent

The forchestrator (fog orchestrator) is responsible for the
lifecycle management of all created resources during runtime
at the fog sites. In cases where the application consists of
multiple application components, the orchestrator is responsible
to ensure the interworking between the components. This is
done by injecting runtime variables into the workload, such as
mutual API endpoints of each service.

For each user, the orchestrator executes a discovery process
and evaluates the policy with the discovery result to plan
placements. Placement decisions are made based on policies.
Since different applications can use different metrics to define
QoS, a flexible decision-making process based on such policies
is required. Policies are implemented independent of a specific
application, to allow their reuse across different applications.
Applications specify the concrete policy they want to be
applied for the placement in an application descriptor. A policy
can invoke so-called measurements, which gather additional
information, e.g., by measuring latencies or available bandwidth.
Policies exist with different characteristics in terms of the
tenancy of application components and users. As described
in Section III-B, policies are abstract implementations of the
decision logic rather than application-specific. According to
Hong et. al. [43], policies can be classified as follows:

8https://dublin-traceroute.net (accessed: 2020-02-06)

• SaSu (Single application component - Single user): One
fog application used by a single user.

• SaMu (Single application component - Multi-user): One
fog application shared between multiple users.

• MaSu (Multi-application component - Single user): Mul-
tiple applications or components used by a single user.

• MaMu (Multi-application component - Multi-user): Mul-
tiple applications or components shared between multiple
users.

Policies can be distinguished in an abstract way by the
types described above. The implementation of such a type
fulfills a more concrete use case, while deriving the basic
properties such as application and user cardinality. The naming
of concrete policies is based on the use-case and the policy
type. Two examples of policies are (i) nearest-SaSu, which for
a single user finds the nearest place to run a single application
component, and (ii) aggregation-SaMu, which places a single
application at the best place to aggregate data. Placement plans
generated by applying the policies are independent of the
execution environment. Depending on the concrete execution
environment at hand, placement decisions are then translated
to API calls of the concrete execution environment. This is
done in the final orchestration step, where the forchestrator
creates tenants on top of each fog resource to provide isolation
and multi-tenancy. In our implementation, the K8agent is used
as a helper microservice located at the fog sites. This service
acts as a gateway to Kubernetes at each fog site. It provides
two kinds of functionalities: (i) managing the tenants at the
fog site and (ii) executing measurements, e.g., measuring the
latency to users.

V. EVALUATION

We evaluate Sunstone on Internet-scale. Our experimental
setup is described in Section V-A. We then show how the
discovery and orchestration components of Sunstone reduce
the latency for users (Sections V-B and V-C). We further discuss
our findings and their implications in Section V-D.

A. Experimental Setup and Methodology

We conduct an experimental study on top of the real network
topology of the Internet’s ASes. To do so, we use data from
RIPEstat9. More specifically, we leverage measurement data
collected from RIPE atlas10 probes. These probes, deployed and
operated by volunteers, provide connectivity and reachability
information and can be used for custom measurements (e.g.,
to measure latencies). We start from a complete list of all
ASes, retrieved from CAIDA11 and enriched with metadata
from RIPE. For simplicity reasons, we only consider ASes
located in Germany for our evaluation. Furthermore, only ASes
which contain at least one RIPE probe are used, which are
reachable without NAT (important for the usage of ICMP in
the traceroute and measurements), resulting in a total of 107
ASes. It is important to filter out probes with NAT in front,

9https://stat.ripe.net/ (accessed: 2020-01-21)
10https://atlas.ripe.net/ (accessed: 2020-01-21)
11https://www.caida.org (accessed: 2020-01-21)



to use ICMP with them directly. We assume we have one
cloud location, represented by an AWS EC2 instance located
in the Frankfurt region. Probe metadata, such as the probe’s
IP address and geolocation is added from RIPEstat. We then
construct a graph of all ASes. To do so, we run the same
traceroute mechanisms as implemented in Section IV-A to
construct a path from our cloud location to all probes. All
traceroute results are aggregated by IP to AS-level data, using
a database of prefix-to-ASN relationships. Information from
raw BGP updates, such as prefix-to-AS mappings is loaded
from Routeviews RIB (Routing Information Base), creating a
graph of all ASes. The topology of the Internet on AS level is
loaded from CAIDA (as-rel dataset). This data allows us to
add paths that were not taken by our traceroute packets. The
result is a graph of all German ASes, whose edges represent
the connection from the cloud instances to all relevant probes.
Figure 5 summarizes the process of creating this graph. We use
this graph to run an evaluation of our discovery approaches,
which we use as the topology for our evaluation.

Filter
RIPE 
STAT

AS metadata Only ASes
within Germany

Enrich

RIPE 
STAT

RIPE Atlas 
probes

Traceroute

AggregateCreate graphCreate graphEnrich

CAIDA
as-rel

AS relationships

Add probe
metadata

Run cloud and
probe traceroutes

Route-
views RIB

Raw BGP data

EvaluationEvaluation Aggregate IPs
to ASNs

Figure 5. Evaluation Setup

B. Discovery

We first show how the combination of different discovery
mechanisms reduces the resulting end-to-end latency from the
user to the location where the service is executed. We simulate
the discovery process as follows: We use the RIPE probes to
represent the location of both users and fog sites. For the fog
sites, we assume that either 5 % or 10 % of ASes contain at least
one fog site. For each of those, we randomly choose one probe
within that AS to represent this fog site. Note that for each AS,
we were able to find a probe without NAT, meaning that we can
measure the exact latency to the probe. The remaining probes
are considered to be users. We start from the baseline where
our service runs in the cloud on Amazon AWS infrastructure
in the Frankfurt region and measure the hop count and latency
via the same traceroute mechanism we use for discovery (see
Section III-A1). Then, we perform discovery (i) via DNS only
and (ii) including BGP data.

0 10 20 30 40
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

BGP (10% fogs)
BGP (5% fogs)
DNS (10% fogs)
Cloud only

Figure 6. CDF of the End-to-End Latency Resulting from Different Discovery
Mechanisms

For DNS-based discovery, we first determine the shortest
path from each user to our cloud instance by using our enriched
graph. This graph contains a real traceroute from our cloud
location to each user, which in most cases is the shortest path
(physically shorter paths might exist but for instance, those
might not be used because of economic reasons). On this path,
we check for the existence of ASes which contain fog resources.
For DNS, we assume that the shortest AS path is used and that
each AS configures all NAPTR records correctly. If we include
BGP-based discovery, we assume that the information about fog
sites has been disseminated throughout the Internet. Since the
BGP-method uses a list of all tagged networks, as described in
Section III-A3, we use a list of all ASes with fog resources as
well for the evaluation. We determine the k-value for each path
from the users to each fog. For non-orchestrated results, we just
use the nearest fog with the lowest k-value. For orchestrated
results, we use RIPE Atlas probe data to determine the latency
from each fog to each user. Afterward, we use only the best
result for each user. The difference between orchestrated and
discovery-closest is evaluated in Section V-C in more detail.

Figure 6 shows the CDF of the latency for DNS- and BGP-
discovery, as well as the cloud baseline. The average latency
from the cloud to the user is 13.32 ms, while it becomes
marginally better if we use the DNS approach to find fog sites
with 11.71 ms (-12.09 %). A great improvement is possible with
the BGP approach, which already achieves an average latency
of 8.05 ms (-39.56 %) with just 5 % of ASes containing fog
sites. Doubling the amount of ASes with fog sites and using our
BGP-based approach results in 6.98 ms (-47.6 %) latency on
average. It is worth noticing, that BGP-discovery outperforms
the DNS-only discovery, even with half the percentage of fog
sites.

C. Orchestration

We now show how the previously obtained results improve
if we include the orchestration component. Recall that if we
use the discovery mechanism alone, the fog with the shortest
paths to the user is chosen. Because this path length does not
necessarily correlate with the latency of the path (e.g., when
ISPs use AS prepending to increase the length artificially this



does not impact the latency), a suboptimal fog site might be
chosen. In fact, when analyzing data depicted in Figure 7(a),
we found that the AS path length to the best fog site in
terms of latency could even be longer than the user to cloud
path. To leverage this best fog site, we need a corresponding
orchestration policy that is executed. Figure 7(b) compares
the resulting end-to-end latency if we use only the closest fog
from the discovery (in terms of hop count) versus a placement
decision made by the orchestrator using the nearest-SaSu policy
(see Section IV-B). Without orchestration, the average latency
is even worse than using the cloud, because the most efficient
fog is not selected (17.92 ms). When using the orchestrator we
get a much better average latency (6.98 ms).

0 2 4
AS Hops

0.0

0.2

0.4

0.6

0.8

1.0

Cloud-only
BGP (10% fogs)

(a) CDF of the AS Hop
Count

0 5 10 15 20 25 30 35 40
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Orchestrated (10% fogs)
Discovery-closest (10% fogs)

(b) CDF of the Latency Comparison

Figure 7. Evaluation of the Orchestration Component

D. Discussion and Future Work

We now discuss some of the implications and limitations of
our proposed approach in a real-world environment:
Discovery time: In our evaluation, we have assumed that the
discovery is triggered at the moment when the decision is made
to migrate a (running) application to fog resources. We found
that on average, a full discovery and orchestration, i.e., using
all three mechanisms, carrying out measurements according
to placement policies, and placing a container on Kubernetes,
took between 14 s and 23 s. It is important to note that besides
carrying out fog discovery on demand, we can also envision
an asynchronous mechanism that periodically runs a discovery
and caches the result.
Number of fog sites: In our evaluation setup, we have assumed
that 5 % or 10 % of all ASes contain (at least) one fog site. We
further motivate this choice by showing how this percentage
affects the resulting possible latency. Figure 8 shows the results
for percentages between 1 and 10. From the results, we can
conclude that the gain in latency flattens out quickly and does
not improve above 8 %. Note that the latency measured here
is to the closest fog site and thus not necessarily the one that
is found by the discovery.
Distribution of BGP communities: We have assumed that
BGP community strings are not filtered. In practice, however,
some of the ISPs will block all or some incoming communities
(e.g., private communities) to prevent the triggering of control
communities in their own network. Due to filtering at AS
borders with increasing AS hop counts the probability that
a community is filtered increases as well. Furthermore, there
is a considerable delay, ranging from minutes to hours in

2 4 6 8 10
Percentage of deployed fogs

7.0

7.5

8.0

8.5

M
ea

n 
La

te
nc

y 
(m

s)

Figure 8. Average Latency for a Varying Number of Fog Sites

the distribution of community strings. To mitigate this, one
could employ DNS Pre-Loading. This method loads all PTR
and NAPTR records from each prefix routed in the Internet
beforehand, making all fogs within an AS known immediately.
This method is very reliable but still has a delay in the
availability of the information. In a measurement study, Streibelt
et al. [44] report that more than 50 % of communities traverse
more than four ASes. If we compare this finding with a RIPE
study12 that states the average AS hop count in IPv4 networks
to be 4.3, we can conclude that the dissemination of community
strings is sufficient in practice.
Scope of the discovery: For simplicity reasons, we have
only considered ASes located in Germany to evaluate our
discovery mechanisms. The results can easily be transferred to
a larger scale, up to the global Internet. In fact, the demonstrated
benefits (e.g., with respect to the improved end-to-end latency)
in our restricted scope of ASes can be considered a worst-case
scenario. If we would consider cloud instances that much more
distant to the user (as is the case in many applications today),
the benefits of our discovery and orchestration mechanisms
would be even more striking. We leave this to explore for
future work.
AS path asymmetry: The measurements carried out by the
orchestrator do not take into account AS path asymmetry, i.e.,
measurements are conducted only on the path from the fog
site or cloud to the user and not vice versa. In many cases,
the chosen fog site will be close to the user, i.e., either in the
same AS or in neighboring ASes. The closer the fog is to the
user, the more likely we are to have symmetric paths, since
path asymmetry mainly occurs if we traverse multiple ASes
and hot-potato routing is used. Hence, we argue this one-way
measurement is unlikely to have a negative impact in practice.

VI. CONCLUSION

In this paper, we presented Sunstone, a novel approach for
the discovery and orchestration of federated Fog Computing
resources. By combining three discovery mechanisms, Sunstone
finds fog resources on a global scale, while remaining scalable.
Following the discovery procedure, an orchestration component
makes deployment decisions based on customizable application
placement policies. We have demonstrated the viability of

12https://labs.ripe.net/Members/mirjam/update-on-as-path-lengths-over-
time (accessed: 2020-01-28)



Sunstone in a real-world testbed, showing it results in lower
end-to-end latencies and hence, improves the QoS of services.

ACKNOWLEDGEMENT

This work has been cofunded by the German Research Foundation
(DFG) and the National Nature Science Foundation of China (NSFC)
joint project under Grant No. 392046569 (DFG) and No. 61761136014
(NSFC), and as part of the Collaborative Research Center 1053 -
MAKI (DFG). The authors would like to thank man-da.de GmbH
for their support. Furthermore, this work was supported by the
AWS Cloud Credits for Research program.

REFERENCES

[1] J. Gedeon, J. Heuschkel, L. Wang, and M. Mühlhäuser, “Fog computing:
Current research and future challenges,” in 1. GI/ITG KuVS Fachge-
spräche Fog Computing, 2018, pp. 1–4.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and its
Role in the Internet of Things,” 2012, pp. 13–16.

[3] J. Gedeon, F. Brandherm, R. Egert, T. Grube, and M. Mühlhäuser, “What
the Fog? Edge Computing Revisited: Promises, Applications and Future
Challenges,” IEEE Access, vol. 7, pp. 15 284–152 878, 2019.

[4] M. Satyanarayanan, “The emergence of edge computing,” IEEE Com-
puter, vol. 50, no. 1, pp. 30–39, 2017.

[5] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of
things realize its potential,” IEEE Computer, vol. 49, no. 8, pp. 112–116,
2016.

[6] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proc. MobiSys. ACM, 2014,
pp. 68–81.

[7] E. Cuervo, K. Chintalapudi, and M. Kotaru, “Creating the perfect illusion:
What will it take to create life-like virtual reality headsets?” in Proc.
HotMobile, 2018, pp. 7–12.

[8] R. Vilalta, S. Via, F. Mira, R. Casellas, R. Muñoz, J. Alonso-Zarate,
A. Kousaridas, and M. Dillinger, “Control and management of a connected
car using SDN/NFV, fog computing and YANG data models,” in Proc.
NetSoft, 2018, pp. 378–383.

[9] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, “Consolidate
IoT Edge Computing with Lightweight Virtualization,” IEEE Network,
vol. 32, no. 1, pp. 102–111, 2018.

[10] J. Cappos, M. Hemmings, R. McGeer, A. Rafetseder, and G. Ricart,
“EdgeNet: A Global Cloud That Spreads by Local Action,” in Proc.
IEEE/ACM Symposium on Edge Computing (SEC), 2018, pp. 359–360.

[11] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud to edge with
kubeedge,” in Proc.IEEE/ACM Symposium on Edge Computing (SEC),
2018, pp. 373–377.

[12] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in IoT context:
Horizontal and vertical Linux container migration,” in Proc. of Global
Internet of Things Summit, 2017, pp. 1–4.

[13] T. Taleb and A. Ksentini, “Follow Me cloud: Interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, 2013.

[14] IEEE-1934-2018, “IEEE standard for adoption of openfog reference
architecture for fog computing,” IEEE Standard Association, Standard,
2018.

[15] K. Bhardwaj, M. Shih, P. Agarwal, A. Gavrilovska, T. Kim, and
K. Schwan, “Fast, scalable and secure onloading of edge functions using
airbox,” in Proc. IEEE/ACM Symposium on Edge Computing (SEC),
2016, pp. 14–27.

[16] A. Abujoda and P. Papadimitriou, “MIDAS: middlebox discovery and
selection for on-path flow processing,” in Proc. COMSNETS, 2015, pp.
1–8.

[17] S. Avancha, A. Joshi, and T. Finin, “Enhanced Service Discovery in
Bluetooth,” Computer, vol. 35, no. 6, pp. 96–99, 2002.

[18] C. Lee and S. Helal, “Protocols for service discovery in dynamic and
mobile networks,” Int. Journal of Computer Research, vol. 11, no. 1, pp.
1–12, 2002.

[19] A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker, “UDDIe: An
extended registry for Web services,” in Proc. SAINT, 2003, pp. 85–89.

[20] D. Kovachev, T. Yu, and R. Klamma, “Adaptive computation offloading
from mobile devices into the cloud,” in Proc. ISPA, 2012, pp. 784–791.

[21] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” IEEE Computer, vol. 43, no. 4, pp. 51–56,
2010.

[22] A. ur Rehman Khan, M. Othman, S. A. Madani, and S. U. Khan, “A
Survey of Mobile Cloud Computing Application Models,” IEEE Comm.
Surveys and Tutorials, vol. 16, no. 1, pp. 393–413, 2014.

[23] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[24] M. Golkarifard, J. Yang, Z. Huang, A. Movaghar, and P. Hui, “Dandelion:
A unified code offloading system for wearable computing,” IEEE
Transactions on Mobile Computing, vol. 18, no. 3, pp. 546–559, 2019.

[25] P. Liu, D. Willis, and S. Banerjee, “Paradrop: Enabling lightweight multi-
tenancy at the network’s extreme edge,” in Proc. IEEE/ACM Symposium
on Edge Computing (SEC), 2016, pp. 1–13.

[26] J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis, “Web
service discovery mechanisms: Looking for a needle in a haystack,” in
Int. Workshop on Web Engineering, vol. 38, 2004, pp. 1–14.

[27] A. Bröring, S. K. Datta, and C. Bonnet, “A Categorization of Discovery
Technologies for the Internet of Things,” in Proc. Int. Conf. on the
Internet of Things, 2016, pp. 131––139.

[28] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Kitazawa,
“Fogflow: Easy programming of iot services over cloud and edges for
smart cities,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 696–707,
2018.

[29] R. Klauck and M. Kirsche, “Bonjour Contiki: A Case Study of a DNS-
Based Discovery Service for the Internet of Things,” in Proc. Int. Conf.
on Ad-Hoc Networks and Wireless, 2012, pp. 316–329.

[30] M. Antonini, S. Cirani, G. Ferrari, P. Medagliani, M. Picone, and L. Veltri,
“Lightweight multicast forwarding for service discovery in low-power
IoT networks,” in Proc. SoftCOM, 2014, pp. 133–138.

[31] P. Gomes, E. Cavalcante, T. Rodrigues, T. Batista, F. C. Delicato, and
P. F. Pires, “A Federated Discovery Service for the Internet of Things,”
in Proc.Workshop on Middleware for Context-Aware Applications in the
IoT, 2015, pp. 25–30.

[32] S. Ben Fredj, M. Boussard, D. Kofman, and L. Noirie, “Efficient semantic-
based IoT service discovery mechanism for dynamic environments,” in
Proc. PIMRC, 2014, pp. 2088–2092.

[33] V. Daza, R. D. Pietro, I. Klimek, and M. Signorini, “CONNECT:
contextual name discovery for blockchain-based services in the IoT,” in
Proc. ICC, 2017, pp. 1–6.

[34] A. Zavodovski, N. Mohan, and J. Kangasharju, “edisco: Discovering
edge nodes along the path,” CoRR, vol. abs/1805.01725, pp. 1–6, 2018.

[35] J. Gedeon, C. Meurisch, D. Bhat, M. Stein, L. Wang, and M. Mühlhäuser,
“Router-based brokering for surrogate discovery in edge computing,” in
Proc. ICDCS Workshops, 2017, pp. 145–150.

[36] D. Nguyen, Z. Shen, J. Jin, and A. Tagami, “ICN-Fog: An Information-
Centric Fog-to-Fog Architecture for Data Communications,” in Proc.
GLOBECOM, 2017, pp. 1–6.

[37] S. Hoque, M. S. de Brito, A. Willner, O. Keil, and T. Magedanz,
“Towards container orchestration in fog computing infrastructures,” in
Pro. COMPSAC, 2017, pp. 294–299.

[38] A. J. Fahs and G. Pierre, “Proximity-Aware Traffic Routing in Distributed
Fog Computing Platforms,” pp. 478–487, 2019.

[39] T. Li, R. Chandra, and P. Traina, “RFC1997: BGP Communities
Attribute,” Internet Requests for Comments, RFC, 1996. [Online].
Available: https://www.rfc-editor.org/info/rfc1997

[40] J. Heitz, J. Snijders, K. Patel, I. Bagdonas, and N. Hilliard, “RFC8092:
BGP Large Communities Attribute,” Internet Requests for Comments,
RFC, 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8092

[41] R. M. Enger and J. K. Reynolds, “RFC1470: FYI on a network
management tool catalog: Tools for monitoring and debugging TCP/IP
internets and interconnected devices,” Internet Requests for Comments,
RFC, 1993. [Online]. Available: https://www.rfc-editor.org/info/rfc1470

[42] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy,
C. Magnien, and R. Teixeira, “Avoiding Traceroute Anomalies with Paris
Traceroute,” in Proc. IMC, 2006, pp. 153–158.

[43] C. Hong and B. Varghese, “Resource management in fog/edge computing:
A survey on architectures, infrastructure, and algorithms,” ACM Comput.
Surv., vol. 52, no. 5, pp. 97:1–97:37, 2019.

[44] F. Streibelt, F. Lichtblau, R. Beverly, C. Pelsser, G. Smaragdakis,
R. Bush, and A. Feldmann, “BGP Communities: A Measurement
Study,” 2018. [Online]. Available: https://ripe77.ripe.net/presentations/40-
communities_slides.pdf


